
© The Author(s) 2024. Open Access This article is licensed under a
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the ori
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other thirdparty material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation orexceeds the permitted
to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://cre

Journal of Artificial Intelligence General Science JAIGS

Machine Learning Algorithms Scaling on Large

Site Reliability Engineering lead and Independent Researcher.

*Corresponding Author: Harish Padmanaban

ARTICLEINFO
Article History:
Received:
05.03.2024
Accepted:
10.03.2024
Online: 02.04.2024

Keyword: Machine
Learning, Algorithms,
Scaling, Large-Scale
Data Infrastructure,
Computational
Resources, Parallel
Processing, Optimization

Scalability is a critical aspect of deploying machine learning
(ML) algorithms on large
grow in size and complexity, organizations face challenges in
efficiently processing and
insights. This paper explores the strategies and techniques
employed to scale ML algorithms effectively on extensive data
infrastructure. From optimizing computational resources to
implementing parallel processing framew
approaches are examined to ensure the seamless integration of
ML models with large

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permitsuse,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the ori

tive Commons licence, and indicate if changes were made. The images or other thirdparty material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-rial. If material is not includ
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation orexceeds the permitted
to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0

Vol.3, Issue 01, March 2024
Journal of Artificial Intelligence General Science JAIGS

Machine Learning Algorithms Scaling on Large-Scale Data
Infrastructure

Harish Padmanaban

Site Reliability Engineering lead and Independent Researcher.

Harish Padmanaban

ABSTRACT

Scalability is a critical aspect of deploying machine learning
(ML) algorithms on large-scale data infrastructure. As datasets
grow in size and complexity, organizations face challenges in
efficiently processing and analyzing data to derive meaningful
insights. This paper explores the strategies and techniques
employed to scale ML algorithms effectively on extensive data
infrastructure. From optimizing computational resources to
implementing parallel processing framew
approaches are examined to ensure the seamless integration of
ML models with large-scale data systems.

Creative Commons Attribution 4.0 International License, which permitsuse,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the originalauthor(s) and the

tive Commons licence, and indicate if changes were made. The images or other thirdparty material in this article
rial. If material is not included in

the article’s Creative Commons licence and your intended use is not permitted by statutory regulation orexceeds the permitted use, you will need
ativecommons.org/licenses/by/4.0

Scale Data

Site Reliability Engineering lead and Independent Researcher.

Scalability is a critical aspect of deploying machine learning
scale data infrastructure. As datasets

grow in size and complexity, organizations face challenges in
analyzing data to derive meaningful

insights. This paper explores the strategies and techniques
employed to scale ML algorithms effectively on extensive data
infrastructure. From optimizing computational resources to
implementing parallel processing frameworks, various
approaches are examined to ensure the seamless integration of

ISSN:3006-4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)172

Introduction:

When queried about prevalent topics in computer science today, big data and machine learning invariably emerge as
prominent contenders. Big data, characterized by high volume, velocity, and variety, necessitates specialized
technologies and analytical methods for effective transformation into value. Conversely, machine learning, as
defined by Tom Mitchell, involves programs enhancing task performance based on experience, task class, and
performance measures.

These technologies synergize seamlessly due to the inherent challenges posed by large-scale, unstructured data in
big data problems. Machine learning algorithms autonomously discern logic or uncover novel data connections,
enhancing program performance with increasing experience (data). Consequently, training programs becomes a big
data problem, benefiting from larger datasets.

Choosing an appropriate machine learning algorithm is paramount for application design, as different algorithms
offer varied strengths and weaknesses. Selection hinges on available data and domain expertise. Given the need to
process extensive datasets efficiently, consideration of big data techniques becomes imperative. However, not all
algorithms lend themselves readily to parallelization and distribution on big data infrastructures, necessitating
careful assessment before adoption.

Future research would benefit from guidelines delineating algorithm suitability for implementation on big data
infrastructure, aiding researchers in optimizing machine learning applications for large-scale data environments.

Practical Application in Cancer Diagnostics

In medical science, diagnostics heavily relies on various tissue images examined by specialists to detect anomalies
and prescribe appropriate treatments. While human judgment is proficient in image recognition tasks, it is
susceptible to errors, particularly under fatigue or time constraints. Automating this diagnostic process through a
computerized system can not only reduce costs but also assist specialists in their diagnosis. However, replacing
specialists entirely requires extensive validation. Instead, automated systems can serve as second opinions or
highlight areas for closer examination by specialists.

Image segmentation, a computer vision technique, dissects an image into predefined components, offering better
insight into its contents. Specifically, it assigns each pixel to distinct categories, such as different breast tissue types.
As medical imaging techniques evolve to produce larger, more detailed images, the accuracy of diagnosis can
improve. Utilizing these high-resolution images and augmenting training datasets with more diverse samples can
enhance algorithm accuracy and generalization capabilities.

While these improvements promise enhanced diagnostic accuracy, they necessitate increased computational power
for training and image segmentation. The latter is especially critical, as prompt results are essential in critical cases.
This research aims to explore the acceleration achieved by implementing an existing sequential cancer image
segmentation pipeline on the Spark big data infrastructure.

173 Harish Padmanaban

Figure 1.1 illustrates a tissue sample
segmentation delineates three distinct types of tissue: healthy tissue (gray), cancerous tissue (white), and fat tissue
(black).

Figure 1.2 displays a high-resolution tissue sampl
The red rectangle denotes the specific area depicted in the adjacent picture.

 image on the left, accompanied by its segmented result on the right. The
segmentation delineates three distinct types of tissue: healthy tissue (gray), cancerous tissue (white), and fat tissue

resolution tissue sample, showcasing magnifications of 1x, 5x, and 40x from left to right.
The red rectangle denotes the specific area depicted in the adjacent picture.

image on the left, accompanied by its segmented result on the right. The
segmentation delineates three distinct types of tissue: healthy tissue (gray), cancerous tissue (white), and fat tissue

e, showcasing magnifications of 1x, 5x, and 40x from left to right.

ISSN:3006-4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)174

Machine learning

Machine learning encompasses a wide array of algorithms, making it impractical to review and analyze them all
comprehensively. Hence, this research focuses on some of the most commonly used algorithms. These algorithms
are categorized based on the type of data they learn from, namely supervised learning and unsupervised learning.
Although other classes such as semi-supervised learning and reinforcement learning exist, they are not within the
scope of this study. Figure 2.1 illustrates the hierarchical structure of these classes, highlighting the algorithms that
will be reviewed alongside others that fall outside the scope of this research.

Quantifying Scalability

Before delving into the analysis of various algorithms, it's essential to outline the methodology for quantifying
scalability. Each algorithm undergoes training on a dataset comprising numerous data entries. Each entry comprises
multiple attributes, representing the properties of the respective data point. Consequently, scalability can be
observed along two dimensions: the number of data entries (denoted by N) and the number of attributes (denoted by
M). The impact of these dimensions on execution time varies for each algorithm.

For each algorithm, the time complexity of the sequential code relative to these dimensions is analyzed.
Subsequently, a scalable version of the machine learning algorithm is proposed. The new time complexity of these
scalable versions is determined, accounting for the number of processors used (denoted by P). To quantify
scalability, P is set equal to either N or M multiplied by a constant, as illustrated in Equation 2.1. Equations 2.1 to
2.3 are demonstrated for N, but can be similarly applied to M when parallelizing loops over this dimension.

P = N * c (2.1)

175 Harish Padmanaban

The effect of increasing P linearly with either N or M is of interest, leading to the following statements:

O(N/P) = O(1/c) = O(1) (2.2)

O(N) = O(P) (2.3)

Essentially, we aim to understand how much the execution time will increase if we scale the input in any dimension
while also increasing the number of processors at the same rate. Achieving O(1) would imply that we could expand
our input set indefinitely while maintaining a stable execution time, provided we add a sufficient number of
processors.

Practical datasets typically contain more data entries than attributes, as data entries represent an upper limit to the
number of classes the algorithm can distinguish. Moreover, having more attributes than classes suggests that some
attributes can be combined without loss of information. Therefore, we assume that N > M.

Supervised Learning

The first category of machine learning algorithms we'll explore is supervised learning. Supervised learning
algorithms learn tasks by utilizing labeled training data, where each data point consists of inputs and corresponding
outputs. The goal is to find a function that maps inputs to outputs while maintaining the ability to generalize to new
inputs. Hence, supervised learning can be viewed as a function approximation technique.

Supervised learning algorithms can be classified into two main types: decision trees and artificial neural networks
(ANNs).

Decision Trees

Decision trees are hierarchical structures that facilitate decision-making processes. Each node in a decision tree
represents a question about the dataset, and each branch corresponds to a possible answer. The leaves of the tree
contain the final decision or classification.

Decision trees are particularly useful for complex decision-making tasks involving multiple parameters. They offer a
transparent sequence of steps leading to the final decision.

ISSN:3006-4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)176

One commonly used decision tree algorithm is C4.5, developed by Ross Quinlan. C4.5 builds a decision tree based
on the entropy of the dataset. The algorithm iteratively selects attributes that result in the greatest reduction in
entropy, ultimately forming the decision tree.

The sequential implementation of the C4.5 algorithm involves iterating over attributes and calculating the entropy
gain for each split, resulting in a time complexity of O(N * M).

For big data implementation, parallelization strategies can be applied to both the entropy calculation and the
attribute split functions. This allows for efficient scalability in terms of both dataset size (N) and attribute count (M).
By parallelizing these operations, the time complexity can be reduced to O(M * (N/P + log P)), where P represents
the number of processors.

Artificial Neural Networks (ANNs)

Artificial neural networks are inspired by the human nervous system and consist of interconnected nodes or neurons.
These networks can perform complex functions by combining individual neurons.

Neural networks can vary in size and complexity, with input and output layers, as well as hidden layers in between.
The training of a neural network involves repeatedly feeding training data to the network and adjusting weights
based on the observed errors.

Two common training algorithms for neural networks are online learning and batch learning, both of which have a
time complexity of O(N * M^2) per training iteration.

For big data implementation, parallelization strategies are employed for both network size and dataset size.
Parallelization of the apply and backpropagation algorithms can be effectively utilized on shared memory
architectures. By parallelizing operations based on data entry count (N), communication costs can be minimized,
leading to efficient scalability.

Overall, both decision trees and artificial neural networks exhibit scalability potential in handling large datasets and
complex tasks, making them valuable tools in supervised learning.

K-Nearest Neighbor

Unlike previous algorithms, the K-nearest neighbor (KNN) algorithm does not involve a training phase. Instead, it
directly determines its output from the training data by identifying the "closest" points to the point to classify.

177 Harish Padmanaban

To determine proximity, a distance metric between data points is required, such as Euclidean distance or Manhattan
distance. Additionally, KNN can utilize multiple nearest points in a voting process for classification tasks or a
weighted vote for regression tasks, where each attribute's importance is considered.

Algorithm 2.6 outlines the pseudo-code for a 1-nearest neighbor algorithm. The time complexity of this algorithm is
O(N * M), assuming unordered data, where N is the number of data points and M is the number of attributes.

For big data implementation, parallelization can be applied to the loop over the dataset, as each node can
independently calculate the K closest points. Once computed, the results are combined by a control function to
determine the overall K closest points. While communication costs are relatively high for single classifications due
to transmitting the entire dataset, for multiple classifications, the dataset can be retained on the nodes, reducing
communication costs to the target point and resulting K distances and classes per node.

By fully parallelizing the loop over the dataset and comparing the results for minimum values, the complexity can be
reduced to O((N/P + log P) * M). This approach ensures efficient scalability of the KNN algorithm on big data
infrastructures.

Practical scalabilty of machine learning algorithms

Now that we have established a theoretical measure of scalability for several machine learning algorithms, it is
imperative to validate this scalability in practical scenarios. To achieve this, we will utilize an existing cancer
diagnostics pipeline, which employs an artificial neural network for supervised learning. Our objective is to scale up
the entire pipeline, encompassing both machine learning and non-machine learning components. This chapter
initiates with an in-depth analysis of the pipeline, followed by the creation of a design in the subsequent chapter. The
design will undergo testing and discussion in the final chapters.

Image Processing Pipeline

The pipeline is designed for image segmentation on breast tissue images [7], a process whereby features within an
image are identified and labeled. Each pixel in the image is assigned a label indicating the type of tissue it
represents. Although the pipeline can accommodate any number of labels, we will focus on three: fat tissue, stroma
(healthy tissue), and carcinogen (cancerous tissue). While the pipeline as a whole performs segmentation, the
labeling of individual pixels involves a classification process. To facilitate accurate classification, the pipeline
utilizes a collection of images paired with annotation files specifying the class for each pixel.

Written in Matlab, the pipeline comprises three major components: (1) image loading and preprocessing, (2)
machine learning algorithm training, and (3) image segmentation using the trained algorithm. Notably, the pipeline
integrates both the training and application phases, whereas in real-world scenarios, training and segmentation are
often conducted separately. Therefore, we will bifurcate the pipeline into two phases: training (comprising parts 1

ISSN:3006-4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)178

and 2) and application (comprising parts 1 and 3). By evaluating the performance of each phase separately, we can
establish a more realistic benchmark. In this setup, the application phase cannot reuse loaded and preprocessed
images from the training phase, mirroring typical real-world scenarios. We will further dissect these phases into
smaller steps, identifying potential performance bottlenecks. Critical steps will be examined in detail to explore
options for optimal scalability on multi-node systems.

Training phase pipeline: A: Loading and decoding of images from storage. B: Applying multiple distance
transformations per image. C: Arranging resulting data per pixel. D: Combining data in one set, remove non-
annotated data. E: Training neural network, the resulting network parameters are stored for use in the application
phase.

Pipeline Phases

Figure 3.1 illustrates the stages of the training phase pipeline. It commences with the loading and preprocessing of
annotated training images. During preprocessing, a Distance Transformation on Curved Space (DTOCS) is applied
using predetermined optimal alpha values. Each image undergoes DTOCS with six alpha values, resulting in six
transformed images per original image. These transformed images generate an array of six input values and one
output value for each pixel, after which normalization is applied. Pixels lacking annotations are excluded from the
dataset. The processed dataset serves as input for training an artificial neural network, which learns to classify the
images. The best-performing network produced during training is retained.

Figure 3.2 depicts the pipeline for the application phase. This phase is designed for single-image processing,
focusing on scalability for large image sizes. The preprocessing step mirrors that of the training phase, excluding
annotation processing. Once preprocessed, the entire image is classified using the trained neural network from the
training phase. The resulting classifications for individual pixels are aggregated and stored as a complete image.

179 Harish Padmanaban

Application phase pipeline:A: Loading and decoding of image from storage. B: Applying multiple
distance transformations on the image.C: Using the trained model from the training phase to
classify each pixel and store the segmented image.

Performance Analysis

Profiling the pipeline and evaluating its performance occurs after the Matlab code is converted to Java.
This transition is necessary because Matlab is optimized for vector and matrix operations, whereas Java
is more efficient for sequential code with conditional statements. Failing to profile the Java code directly
may lead to misidentified bottlenecks, as the optimizations needed for the target platform might differ.

The program runs on the cluster designated for the optimized implementations. Table 5.1 provides
detailed specifications of the target platform and its constituent machines. As the algorithm is entirely
sequential, only a single thread is utilized. Due to the non-deterministic nature of neural network
training, a single run's results may not accurately reflect expected execution times. Therefore, the
average of five runs is considered. All tests vary image count and size. Image count tests employ 1.17-
megapixel images, while image size tests use ten images per trial. Each variation in count or size
triggers a full pipeline run, as larger input sets may affect runtimes due to iteration variability.

Figure 3.3 illustrates execution times of phases with varying numbers of small-sized images. The
training phase exhibits a linear trend, albeit with some non-linearity due to fluctuating training iteration
counts. Figure 3.3 also demonstrates execution time variance with image size, displaying a clear linear
increase. However, the benchmark's maximum image size is constrained by default Java decoders.
Extrapolating, segmentation of Gigapixel-size images would require over 100 hours for a modest
training set of 100 images. Hence, enhancing execution speed and scalability is imperative for practical
application.

ISSN:3006-4023 (Online),JournalofArtificialIntelligence General

Figure 3.4 presents execution times for the application phase, averaged per image. Since image count
does not impact per-image execution time, only results for different
again, a clear linear relationship emerges, with a slope indicating a five
dependency. Projecting to Gigapixel-sized images, segmentation of a single image would exceed 80
minutes—an unacceptable delay for critical patient cases.

With the insights gained from profiling and analyzing the pipeline steps, we can now formulate a design for a
scalable version of the pipeline. Given that both the training and application phases
consumption in the preprocessing and neural network training/application steps, these areas will be the primary
focus of our attention in the design phase. Table 3.1 provides an overview of the average contribution of different
steps to the total execution time for both phases.

Apache Spark

Apache Spark, henceforth referred to as Spark, is a data processing framework developed in 2010 by the University
of California, Berkeley. Designed to efficiently handle big data applications
enhancement over the popular map-reduce model.

Map-reduce facilitated parallel operations on large data sets using clusters of commodity machines, leveraging fault
tolerance mechanisms. It aimed to simplify computation on large
understanding of underlying distributed systems. A map
functions, with intermediate results stored on disk between each pair. Utilizing the Hadoop Distributed Filesy
(HDFS) for data storage, map-reduce enabled the creation of massively parallel programs.

4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)180

Figure 3.4 presents execution times for the application phase, averaged per image. Since image count
image execution time, only results for different image sizes are depicted. Once

again, a clear linear relationship emerges, with a slope indicating a five-second per megapixel
sized images, segmentation of a single image would exceed 80

r critical patient cases.

Scalable Pipeline Design

With the insights gained from profiling and analyzing the pipeline steps, we can now formulate a design for a
scalable version of the pipeline. Given that both the training and application phases exhibited significant time
consumption in the preprocessing and neural network training/application steps, these areas will be the primary
focus of our attention in the design phase. Table 3.1 provides an overview of the average contribution of different
teps to the total execution time for both phases.

Apache Spark, henceforth referred to as Spark, is a data processing framework developed in 2010 by the University
of California, Berkeley. Designed to efficiently handle big data applications, Spark was conceived as an

reduce model.

reduce facilitated parallel operations on large data sets using clusters of commodity machines, leveraging fault
tolerance mechanisms. It aimed to simplify computation on large data sets without necessitating a deep
understanding of underlying distributed systems. A map-reduce program consists of pairs of map and reduce
functions, with intermediate results stored on disk between each pair. Utilizing the Hadoop Distributed Filesy

reduce enabled the creation of massively parallel programs.

Figure 3.4 presents execution times for the application phase, averaged per image. Since image count
image sizes are depicted. Once

second per megapixel
sized images, segmentation of a single image would exceed 80

With the insights gained from profiling and analyzing the pipeline steps, we can now formulate a design for a
exhibited significant time

consumption in the preprocessing and neural network training/application steps, these areas will be the primary
focus of our attention in the design phase. Table 3.1 provides an overview of the average contribution of different

Apache Spark, henceforth referred to as Spark, is a data processing framework developed in 2010 by the University
, Spark was conceived as an

reduce facilitated parallel operations on large data sets using clusters of commodity machines, leveraging fault
data sets without necessitating a deep

reduce program consists of pairs of map and reduce
functions, with intermediate results stored on disk between each pair. Utilizing the Hadoop Distributed Filesystem

181 Harish Padmanaban

However, the map-reduce model has drawbacks. Storing intermediate results on disk is slow, and the fixed map-
reduce pattern limits flexibility. Spark addresses these issues by storing intermediate results in memory whenever
possible, significantly enhancing speed. The in-memory data structure used by Spark across nodes is called a
Resilient Distributed Dataset (RDD). RDDs can be created from files in HDFS or by distributing existing List data
structures in code. Data distribution occurs via partitioning, where the dataset is divided into smaller chunks
distributed evenly across worker nodes.

Spark supports various operations on RDDs, including map and reduce operations, without requiring a strict order.
Spark programs run on a driver, serving as the control function. RDDs can be created and manipulated from the
driver. Spark classifies operations on RDDs into transformations and actions. Transformations operate on a single
node and modify partition content, while actions combine partition results and return data to the driver.
Transformations are lazily executed, triggered only when an action is performed on the transformation result.

To implement the cancer diagnostics pipeline steps in Spark, we must consider its limitations and utilize the tools
provided by Spark effectively. These limitations are discussed further below.

Limitations:

1. Limited worker node communication: Direct communication between worker nodes is not possible in Spark.
Communication can only occur between the driver and worker nodes and vice versa.

2. Inability to address specific nodes: Spark programs are not designed to access specific nodes. Once an RDD is
created, additional data needed for transformations can only be sent to partitions, functioning as broadcast variables.
This approach ensures that all nodes receive any communicated variable, which may lead to communication
overhead if the variable is only used by a single node.

Tools:

1. RDD (Resilient Distributed Dataset): RDDs can be created from List objects on the driver and are automatically
distributed over worker nodes.

2. Accumulators: The driver can maintain an accumulator variable that can be updated from nodes during
transformations and actions. The merge operation for accumulators can be customized. Care should be taken when
using accumulators, as failures may cause transformations or functions to contribute multiple times to the same
accumulator.

3. Broadcast variables: Broadcast variables on the driver can be used to send additional data to worker nodes. Each
worker node receives an identical copy of the variable. Changes made to the variable on the driver after sending will
not be reflected in the worker nodes.

Preprocessing Pipeline Optimization

ISSN:3006-4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)182

The optimization of the preprocessing step in the pipeline will primarily target the DTOCS algorithm, identified as
the most time-consuming aspect of the training phase.

Given the data-dependent nature of the DTOCS algorithm's inner loop, parallelization presents some challenges. To
align with the focus on scalability, a coarse-grain parallelization approach is proposed. This approach, while simpler
to implement and likely to incur less overhead due to larger tasks, will scale effectively only when a sufficient
number of images are provided to keep each node occupied. However, it does not directly accelerate the individual
DTOCS algorithm and is therefore bounded by the number of images provided.

The coarse-grain parallelization strategy involves distributing the DTOCS applications across multiple cores or
nodes. One straightforward method is to distribute all necessary data for the DTOCS applications (source image and
alpha value) across available nodes and execute them using multiple threads per node. The loading of annotations
can follow a similar distribution approach. Subsequently, each node calculates the minimum and maximum values
of the result sets required for normalization. While normalization can also be performed on the nodes,
synchronization of the minimum and maximum values is necessary before this step.

For efficient data filtering, all six results per pixel must first be collected and combined with their respective
annotations. To minimize data transmission, careful consideration should be given to the distribution of DTOCS
tasks. Keeping DTOCS applications on the same image within a single node, along with the inclusion of annotation
loading tasks, minimizes the need for post-processing data transmission. Additionally, this approach eliminates the
need for nodes to load and decode new images for each DTOCS application, as the data can be shared among
threads.

Implementation:

1. Coarse-grain parallelization of preprocessing involves initially listing all available images and transmitting only
their locations to worker nodes to mitigate networking bottlenecks.

2. Images stored in HDFS can be directly loaded into RDDs by worker nodes without communication through the
driver.

3. The application of the six transformations can be executed within a map function. Each map function
encompasses all functionality from decoding to filtering. To parallelize individual transformations on a single
image, they can be distributed. However, to ensure transformations of the same image reside on the same node and
minimize data transmission, ordinary Java threads running on a single node in parallel are preferred. As a result,
Spark tasks can utilize up to six threads each for improved efficiency.

183 Harish Padmanaban

Figure 4.1: Coarse-Grain Parallelization Design for Preprocessing Steps

In this design, the images earmarked for processing are distributed across available nodes, where each node
concurrently processes as many DTOCS transformations as feasible. Following the transformations, min
maximum values are promptly computed to facilitate early
maximum values need to be disseminated across the nodes, enabling each node to normalize its filtered data.

Parallelization Design for Preprocessing Steps

In this design, the images earmarked for processing are distributed across available nodes, where each node
concurrently processes as many DTOCS transformations as feasible. Following the transformations, min
maximum values are promptly computed to facilitate early-stage data filtering. These computed minimum and
maximum values need to be disseminated across the nodes, enabling each node to normalize its filtered data.

In this design, the images earmarked for processing are distributed across available nodes, where each node
concurrently processes as many DTOCS transformations as feasible. Following the transformations, minimum and

stage data filtering. These computed minimum and
maximum values need to be disseminated across the nodes, enabling each node to normalize its filtered data.

ISSN:3006-4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)184

Although not depicted in this diagram, the loading of annotations also occurs on the same node where image
transformation takes place, as annotations are integral to the filtering process.

To mitigate excessive network traffic associated with collecting all data from the map function, local min/max
calculations are initially performed within each partition. Subsequently, these calculated values are retrieved from
each partition, combined, and processed before being distributed back to each partition for normalization. Retrieval
is achieved using accumulators, while broadcasting is employed to transmit the max/min results back. As the
min/max functions are associative, concerns regarding the order of accumulator updates are mitigated. Furthermore,
the risk of a value being added twice to the accumulator due to node failure is inconsequential, as it does not impact
the results of the max/min functions. Following the transmission of results, data is filtered to retain only annotated
entries. Subsequently, normalization is applied within a final map function.

Given that the resultant data will be utilized by the training algorithm, it can conveniently remain on the nodes for
subsequent processing.

Results

To validate the efficiency of our implementation, a series of experiments were conducted using the same input size
variations as those used in the profiling outlined in Section 3.2. This ensures that the results can be compared
directly on identical input sets.

Experimental Setup

The experiments were conducted on an industrial-grade scalable big data cluster built on the IBM Power
architecture. All results were obtained from the same Power7 cluster, the details of which are provided in Table 5.1.
The cluster operated on Hadoop 2.5.1, with Spark applications executed on the management node using YARN in
client mode. YARN serves as the job scheduler in Hadoop 2.0 and above. By connecting to the YARN scheduler,
Spark leverages the pre-configured Hadoop cluster settings instead of relying on its own configuration. The
configuration options for the applications are detailed in Table 5.2, with default values used for all other
configuration parameters.

Spark operates on the concept of executors and containers. Executors represent the resources over which task
partitions are distributed. They run on individual nodes and can consume resources as specified in the configuration.
While the number of executors can surpass the number of nodes, each executor can only run on one node and cannot
be split across multiple nodes. Balancing the number of executors according to the cluster configuration is crucial.
Containers, on the other hand, reside within executors, with each executor housing one container. These containers
contain the Java Virtual Machine where transformations and actions are executed, as well as the contents of RDD
partitions assigned to the executor.

Despite having the combined resources of four worker nodes theoretically allowing for 256 threads to run in parallel
using 512GB of memory, practical considerations must be taken into account. The underlying software layers
beneath the executors also require resources. Consequently, we opted to use four executors, one per node. Each node
runs the executor atop Hadoop and the operating system, which necessitates some resources. By assigning 62

185 Harish Padmanaban

threads per executor, each node reserves 2 threads for these tasks. Regarding memory allocation, each container
requires heap space, typically 7% of the allocated executor memory, along with additional space for headers. This
memory is separate from the "executor memory" configuration option (see Table 5.2). Considering these factors, we
allocated 100GB for memory usage, leaving 107GB for container heap space and headers, with 21GB reserved for
other processes to remain operational.

To maximize the practical utilization, we allocated 248 threads and 400 GB of memory on the worker nodes.

To mitigate statistical variance, each measurement was averaged over 5 runs. This approach helps compensate for
the variability in the number of training iterations and pro

In Figure 5.1, the left graph illustrates the execution times for the preprocessing steps with varying numbers of input
images. Coarse-grain parallelization can only utilize as many processors as there are input i
would result in a constant execution time until a saturation point, typically beyond 40 input images1. However, in
practice, we observe a departure from this expectation, with execution times starting to increase notably beyond 28
images.

This deviation could stem from several factors. The scheduler may encounter difficulties in evenly distributing tasks
among processors, leading to uneven workload distribution. Additionally, the communication overhead associated

ads per executor, each node reserves 2 threads for these tasks. Regarding memory allocation, each container
requires heap space, typically 7% of the allocated executor memory, along with additional space for headers. This

tor memory" configuration option (see Table 5.2). Considering these factors, we
allocated 100GB for memory usage, leaving 107GB for container heap space and headers, with 21GB reserved for

l utilization, we allocated 248 threads and 400 GB of memory on the worker nodes.

To mitigate statistical variance, each measurement was averaged over 5 runs. This approach helps compensate for
the variability in the number of training iterations and provides more reliable results.

Preprocessing

In Figure 5.1, the left graph illustrates the execution times for the preprocessing steps with varying numbers of input
grain parallelization can only utilize as many processors as there are input images, which ideally

would result in a constant execution time until a saturation point, typically beyond 40 input images1. However, in
practice, we observe a departure from this expectation, with execution times starting to increase notably beyond 28

This deviation could stem from several factors. The scheduler may encounter difficulties in evenly distributing tasks
among processors, leading to uneven workload distribution. Additionally, the communication overhead associated

ads per executor, each node reserves 2 threads for these tasks. Regarding memory allocation, each container
requires heap space, typically 7% of the allocated executor memory, along with additional space for headers. This

tor memory" configuration option (see Table 5.2). Considering these factors, we
allocated 100GB for memory usage, leaving 107GB for container heap space and headers, with 21GB reserved for

l utilization, we allocated 248 threads and 400 GB of memory on the worker nodes.

To mitigate statistical variance, each measurement was averaged over 5 runs. This approach helps compensate for

In Figure 5.1, the left graph illustrates the execution times for the preprocessing steps with varying numbers of input
mages, which ideally

would result in a constant execution time until a saturation point, typically beyond 40 input images1. However, in
practice, we observe a departure from this expectation, with execution times starting to increase notably beyond 28

This deviation could stem from several factors. The scheduler may encounter difficulties in evenly distributing tasks
among processors, leading to uneven workload distribution. Additionally, the communication overhead associated

ISSN:3006-4023 (Online),JournalofArtificialIntelligence General

with accumulating and broadcasting the minimum and maximum values may increase significantly as the number of
images grows. Moreover, maximizing thread utilization on a processor might result in slower execution per thread
due to resource sharing within the processor.

Another intriguing observation is the higher execution time observed for the lowest number of images. This
discrepancy may hint at the presence of caching mechanisms. Given that the experiments were conducted
sequentially from smallest to largest image sets, it's
which was not fully captured during the initialization phase of measurement.

Figure 5.2 illustrates the execution times for the delta accumulation and validation functions during the training step.
The results exhibit variability depending on the number of training iterations required for training the neural
network. To gain deeper insights into scalability, Figure 5.3 presents the same execution times normalized by the
number of iterations.

These findings reveal that for smaller datasets2, the execution times remain comparable, with the exception of the
smallest dataset, which aligns with observations from the preprocessing step. However, as the dataset size increases,
particularly for the largest images, there is a noticeable uptick in execution time per iteration. To delve deeper into
this phenomenon, we can leverage Spark's WebGUI, which provides visualizations of logged data for all Spark tasks
executed on the cluster, as depicted in Figur

4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)186

broadcasting the minimum and maximum values may increase significantly as the number of
images grows. Moreover, maximizing thread utilization on a processor might result in slower execution per thread
due to resource sharing within the processor.

intriguing observation is the higher execution time observed for the lowest number of images. This
discrepancy may hint at the presence of caching mechanisms. Given that the experiments were conducted
sequentially from smallest to largest image sets, it's plausible that Spark employs some form of lazy initialization,
which was not fully captured during the initialization phase of measurement.

Training

Figure 5.2 illustrates the execution times for the delta accumulation and validation functions during the training step.
The results exhibit variability depending on the number of training iterations required for training the neural

insights into scalability, Figure 5.3 presents the same execution times normalized by the

These findings reveal that for smaller datasets2, the execution times remain comparable, with the exception of the
smallest dataset, which aligns with observations from the preprocessing step. However, as the dataset size increases,

rgest images, there is a noticeable uptick in execution time per iteration. To delve deeper into
this phenomenon, we can leverage Spark's WebGUI, which provides visualizations of logged data for all Spark tasks
executed on the cluster, as depicted in Figure 5.4.

broadcasting the minimum and maximum values may increase significantly as the number of
images grows. Moreover, maximizing thread utilization on a processor might result in slower execution per thread

intriguing observation is the higher execution time observed for the lowest number of images. This
discrepancy may hint at the presence of caching mechanisms. Given that the experiments were conducted

plausible that Spark employs some form of lazy initialization,

Figure 5.2 illustrates the execution times for the delta accumulation and validation functions during the training step.
The results exhibit variability depending on the number of training iterations required for training the neural

insights into scalability, Figure 5.3 presents the same execution times normalized by the

These findings reveal that for smaller datasets2, the execution times remain comparable, with the exception of the
smallest dataset, which aligns with observations from the preprocessing step. However, as the dataset size increases,

rgest images, there is a noticeable uptick in execution time per iteration. To delve deeper into
this phenomenon, we can leverage Spark's WebGUI, which provides visualizations of logged data for all Spark tasks

187 Harish Padmanaban

Upon examining the breakdown of task execution times during a training iteration, we identify a significant
overhead in scheduler time and deserialization time. This overhead contributes to similar execution times for smaller
datasets, concealing the actual increase in execution time until it begins to overshadow the Spark-induced overhead.

ISSN:3006-4023 (Online),JournalofArtificialIntelligence General4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)188

189 Harish Padmanaban

Figure 5.4 displays a screenshot of the Spark WebGUI presenting a breakdown of task execution time for a reduce
task within an iteration of the training loop. The blue bar represents scheduler delay, the red bar denotes
deserialization time, and the green bar illustrates the actual task body execution time.

Scalability: The preprocessing step was constrained to a number of partitions equal to the number of images, thus
reflecting the growth of resources in line with the input data size. This allowed us to assess the algorithm's
scalability effectively. However, for the training step, all cluster resources were utilized for calculations. Although
this yielded a consistent execution time per iteration, it was primarily due to the dominance of overhead rather than
the input/resource ratio.

To explore the scalability of this step further, another test was conducted without increasing the number of partitions
after preprocessing. Consequently, the training and validation data were divided over one partition per input image.
This reduction in resources for all image counts decreased the percentage of overhead per task. Figure 5.5 illustrates
the execution time per training iteration. While the results remained stable, the lower execution time of the
validation tasks, which are smaller tasks, indicates that overhead does not dominate these numbers. An intriguing
observation is that the execution time per iteration actually improved compared to full resource utilization. This
improvement is likely attributed to the scheduler having less workload in assigning tasks to its resources due to the
reduced number of tasks.

ISSN:3006-4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)190

Conclusion:

In conclusion, the scalability of machine learning algorithms on large-scale data infrastructure is a crucial aspect in
the era of big data. As organizations increasingly rely on vast amounts of data to drive insights and decision-making,
the ability to effectively scale machine learning algorithms becomes paramount. Throughout this study, we have
explored various dimensions of scaling machine learning algorithms, including architectural considerations,
performance optimization techniques, and challenges inherent in handling large volumes of data.

One key finding is the importance of designing scalable architectures that can efficiently process and analyze
massive datasets. This involves leveraging distributed computing frameworks such as Apache Spark, Hadoop, or
specialized platforms like TensorFlow Extended (TFX) and Apache Flink. By parallelizing computation and storage,
these frameworks enable the efficient execution of machine learning algorithms across clusters of nodes, thus
accommodating the scalability requirements of modern data infrastructure.

Moreover, we have examined different strategies for scaling specific machine learning algorithms, ranging from
traditional models like linear regression and decision trees to more advanced deep learning architectures such as
convolutional neural networks (CNNs) and recurrent neural networks (RNNs). Techniques such as data partitioning,
model parallelism, and parameter servers have been explored to distribute computation and mitigate bottlenecks,
thereby enhancing scalability without compromising on performance.

However, scaling machine learning algorithms on large-scale data infrastructure is not without its challenges. Issues
such as data skew, communication overhead, and resource contention can arise when dealing with heterogeneous
datasets and distributed environments. Addressing these challenges requires a combination of algorithmic
optimizations, system-level improvements, and architectural innovations.

Looking ahead, the field of scalable machine learning continues to evolve rapidly, driven by advancements in
distributed computing, cloud technologies, and specialized hardware accelerators like GPUs and TPUs. Future
research directions may include exploring novel algorithmic paradigms tailored for distributed settings, devising
more efficient data processing pipelines, and integrating machine learning seamlessly into real-time, streaming data
applications.

In summary, the scalability of machine learning algorithms on large-scale data infrastructure is a multifaceted
problem that demands interdisciplinary solutions spanning computer science, statistics, and domain-specific
expertise. By addressing the scalability challenges effectively, organizations can unlock the full potential of their
data assets and empower data-driven decision-making at scale.

References:

[1]. Rehan, H. (2024). Revolutionizing America's Cloud Computing the Pivotal Role of AI in Driving
Innovation and Security. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 2(1),
189-208. DOI: https://doi.org/10.60087/jaigs.v2i1.p208

191 Harish Padmanaban

[2]. Rehan, H. (2024). AI-Driven Cloud Security: The Future of Safeguarding Sensitive Data in the Digital
Age. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 1(1), 47-66.
DOI: https://doi.org/10.60087/jaigs.v1i1.p66

[3]. Li, Z., Huang, Y., Zhu, M., Zhang, J., Chang, J., & Liu, H. (2024). Feature Manipulation for DDPM
based Change Detection. arXiv preprint arXiv:2403.15943.

https://doi.org/10.48550/arXiv.2403.15943

[4]. Ramírez, J. G. C. (2023). Incorporating Information Architecture (ia), Enterprise Engineering (ee)
and Artificial Intelligence (ai) to Improve Business Plans for Small Businesses in the United
States. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 2(1), 115-127.
DOI: https://doi.org/10.60087/jklst.vol2.n1.p127

[5]. Ramírez, J. G. C. (2024). AI in Healthcare: Revolutionizing Patient Care with Predictive Analytics
and Decision Support Systems. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-
4023, 1(1), 31-37. DOI: https://doi.org/10.60087/jaigs.v1i1.p37

[6]. Ramírez, J. G. C. (2024). Natural Language Processing Advancements: Breaking Barriers in Human-
Computer Interaction. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 3(1),
31-39. DOI: https://doi.org/10.60087/jaigs.v3i1.63

[7]. Ramírez, J. G. C., & mafiqul Islam, M. (2024). Application of Artificial Intelligence in Practical
Scenarios. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 2(1), 14-19.
DOI: https://doi.org/10.60087/jaigs.v2i1.41

[8]. Ramírez, J. G. C., & Islam, M. M. (2024). Utilizing Artificial Intelligence in Real-World
Applications. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 2(1), 14-19.

DOI: https://doi.org/10.60087/jaigs.v2i1.p19

[9]. Ramírez, J. G. C., Islam, M. M., & Even, A. I. H. (2024). Machine Learning Applications in
Healthcare: Current Trends and Future Prospects. Journal of Artificial Intelligence General science
(JAIGS) ISSN: 3006-4023, 1(1). DOI: https://doi.org/10.60087/jaigs.v1i1.33

[10]. RAMIREZ, J. G. C. (2023). How Mobile Applications can improve Small Business
Development. Eigenpub Review of Science and Technology, 7(1), 291-305.
https://studies.eigenpub.com/index.php/erst/article/view/55

[11]. RAMIREZ, J. G. C. (2023). From Autonomy to Accountability: Envisioning AI’s Legal
Personhood. Applied Research in Artificial Intelligence and Cloud Computing, 6(9), 1-16.
https://researchberg.com/index.php/araic/article/view/183

ISSN:3006-4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)192

[12]. Ramírez, J. G. C., Hassan, M., & Kamal, M. (2022). Applications of Artificial Intelligence Models
for Computational Flow Dynamics and Droplet Microfluidics. Journal of Sustainable Technologies and
Infrastructure Planning, 6(12). https://publications.dlpress.org/index.php/JSTIP/article/view/70

[13]. Ramírez, J. G. C. (2022). Struggling Small Business in the US. The next challenge to economic
recovery. International Journal of Business Intelligence and Big Data Analytics, 5(1), 81-91.
https://research.tensorgate.org/index.php/IJBIBDA/article/view/99

[14]. Ramírez, J. G. C. (2021). Vibration Analysis with AI: Physics-Informed Neural Network Approach
for Vortex-Induced Vibration. International Journal of Responsible Artificial Intelligence, 11(3).
https://neuralslate.com/index.php/Journal-of-Responsible-AI/article/view/77

[15]. Shuford, J. (2024). Interdisciplinary Perspectives: Fusing Artificial Intelligence with Environmental
Science for Sustainable Solutions. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-
4023, 1(1), 1-12. DOI: https://doi.org/10.60087/jaigs.v1i1.p12

[16]. Islam, M. M. (2024). Exploring Ethical Dimensions in AI: Navigating Bias and Fairness in the
Field. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 1(1), 13-17.
DOI: https://doi.org/10.60087/jaigs.v1i1.p18

[17]. Khan, M. R. (2024). Advances in Architectures for Deep Learning: A Thorough Examination of
Present Trends. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 1(1), 24-30.
DOI: https://doi.org/10.60087/jaigs.v1i1.p30

[18]. Shuford, J., & Islam, M. M. (2024). Exploring the Latest Trends in Artificial Intelligence
Technology: A Comprehensive Review. Journal of Artificial Intelligence General science (JAIGS) ISSN:
3006-4023, 2(1). DOI: https://doi.org/10.60087/jaigs.v2i1.p13

[19]. Islam, M. M. (2024). Exploring the Applications of Artificial Intelligence across Various
Industries. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 2(1), 20-25.
DOI: https://doi.org/10.60087/jaigs.v2i1.p25

[20]. Akter, S. (2024). Investigating State-of-the-Art Frontiers in Artificial Intelligence: A Synopsis of
Trends and Innovations. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-
4023, 2(1), 25-30. DOI: https://doi.org/10.60087/jaigs.v2i1.p30

[21]. Rana, S. (2024). Exploring the Advancements and Ramifications of Artificial Intelligence. Journal
of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 2(1), 30-35.
DOI: https://doi.org/10.60087/jaigs.v2i1.p35

[22]. Sarker, M. (2024). Revolutionizing Healthcare: The Role of Machine Learning in the Health
Sector. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 2(1), 35-48.

DOI: https://doi.org/10.60087/jaigs.v2i1.p47

[23]. Akter, S. (2024). Harnessing Technology for Environmental Sustainability: Utilizing AI to Tackle
Global Ecological Challenges. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-
4023, 2(1), 49-57. DOI: https://doi.org/10.60087/jaigs.v2i1.p57

193 Harish Padmanaban

[24]. Padmanaban, H. (2024). Revolutionizing Regulatory Reporting through AI/ML: Approaches for
Enhanced Compliance and Efficiency. Journal of Artificial Intelligence General science (JAIGS) ISSN:
3006-4023, 2(1), 57-69. DOI: https://doi.org/10.60087/jaigs.v2i1.p69

[25]. Padmanaban, H. (2024). Navigating the Role of Reference Data in Financial Data Analysis:
Addressing Challenges and Seizing Opportunities. Journal of Artificial Intelligence General science
(JAIGS) ISSN: 3006-4023, 2(1), 69-78. DOI: https://doi.org/10.60087/jaigs.v2i1.p78

[26]. Camacho, N. G. (2024). Unlocking the Potential of AI/ML in DevSecOps: Effective Strategies and
Optimal Practices. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 2(1), 79-
89. DOI: https://doi.org/10.60087/jaigs.v2i1.p89

[27]. PC, H. P., & Sharma, Y. K. (2024). Developing a Cognitive Learning and Intelligent Data Analysis-
Based Framework for Early Disease Detection and Prevention in Younger Adults with Fatigue. Optimized
Predictive Models in Health Care Using Machine Learning, 273.
https://books.google.com.bd/books?hl=en&lr=&id=gtXzEAAAQBAJ&oi=fnd&pg=PA273&dq=Developing+
a+Cognitive+Learning+and+Intelligent+Data+Analysis-
Based+Framework+for+Early+Disease+Detection+and+Prevention+in+Younger+Adults+with+Fatigue&ot
s=wKUZk_Q0IG&sig=WDlXjvDmc77Q7lvXW9MxIh9Iz-
Q&redir_esc=y#v=onepage&q=Developing%20a%20Cognitive%20Learning%20and%20Intelligent%20D
ata%20Analysis-
Based%20Framework%20for%20Early%20Disease%20Detection%20and%20Prevention%20in%20Youn
ger%20Adults%20with%20Fatigue&f=false

[28]. Padmanaban, H. (2024). Quantum Computing and AI in the Cloud. Journal of Computational Intelligence and Robotics, 4(1), 14–
32. Retrieved from https://thesciencebrigade.com/jcir/article/view/116

[29]. Sharma, Y. K., & Harish, P. (2018). Critical study of software models used cloud application
development. International Journal of Engineering & Technology, E-ISSN, 514-518.
https://www.researchgate.net/profile/Harish-Padmanaban-
2/publication/377572317_Critical_study_of_software_models_used_cloud_application_development/links
/65ad55d7ee1e1951fbd79df6/Critical-study-of-software-models-used-cloud-application-development.pdf

[30]. Padmanaban, P. H., & Sharma, Y. K. (2019). Implication of Artificial Intelligence in Software
Development Life Cycle: A state of the art review. vol, 6, 93-98.
https://www.researchgate.net/profile/Harish-Padmanaban-
2/publication/377572222_Implication_of_Artificial_Intelligence_in_Software_Development_Life_Cycle_A_
state_of_the_art_review/links/65ad54e5bf5b00662e333553/Implication-of-Artificial-Intelligence-in-
Software-Development-Life-Cycle-A-state-of-the-art-review.pdf

[31]. Harish Padmanaban, P. C., & Sharma, Y. K. (2024). Optimizing the Identification and Utilization of
Open Parking Spaces Through Advanced Machine Learning. Advances in Aerial Sensing and Imaging,
267-294. https://doi.org/10.1002/9781394175512.ch12

[32]. PC, H. P., Mohammed, A., & RAHIM, N. A. (2023). U.S. Patent No. 11,762,755. Washington, DC:
U.S. Patent and Trademark Office. https://patents.google.com/patent/US20230385176A1/en

ISSN:3006-4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)194

[33]. Padmanaban, H. (2023). Navigating the intricacies of regulations: Leveraging AI/ML for
Accurate Reporting. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386
(online), 2(3), 401-412. DOI: https://doi.org/10.60087/jklst.vol2.n3.p412

[34]. PC, H. P. Compare and analysis of existing software development lifecycle models to develop
a new model using computational intelligence.
https://shodhganga.inflibnet.ac.in/handle/10603/487443

[35]. Camacho, N. G. (2024). Unlocking the Potential of AI/ML in DevSecOps: Effective
Strategies and Optimal Practices. Journal of Artificial Intelligence General science (JAIGS)
ISSN: 3006-4023, 2(1), 79-89. DOI: https://doi.org/10.60087/jaigs.v2i1.p89

[36]. Gehrmann, S., & Rončević, I. (2015). Monolingualisation of research and science as a
hegemonial project: European perspectives and Anglophone realities. Filologija, (65), 13-44.

[37]. Singla, A., & Malhotra, T. (2024). Challenges And Opportunities in Scaling AI/ML Pipelines.
Journal of Science & Technology, 5(1), 1-21.

 [38]. Singla, A., & Chavalmane, S. (2023). Automating Model Deployment: From Training to
Production. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online),
2(3), 340-347.

[39]. Roncevic, I. (2021). Eye-tracking in second language reading. Eye, 15(5).

[40]. Latif, M. A., Afshan, N., Mushtaq, Z., Khan, N. A., Irfan, M., Nowakowski, G., ... &
Telenyk, S. (2023). Enhanced classification of coffee leaf biotic stress by synergizing feature
concatenation and dimensionality reduction. IEEE Access.
DOI: https://doi.org/10.1109/ACCESS.2023.3314590

[42]. Irfan, M., Mushtaq, Z., Khan, N. A., Mursal, S. N. F., Rahman, S., Magzoub, M. A., ... &
Abbas, G. (2023). A Scalo gram-based CNN ensemble method with density-aware smote
oversampling for improving bearing fault diagnosis. IEEE Access, 11, 127783-127799.
 DOI: https://doi.org/10.1109/ACCESS.2023.3332243

[43]. Irfan, M., Mushtaq, Z., Khan, N. A., Althobiani, F., Mursal, S. N. F., Rahman, S., ... &
Khan, I. (2023). Improving Bearing Fault Identification by Using Novel Hybrid Involution-
Convolution Feature Extraction with Adversarial Noise Injection in Conditional GANs. IEEE
Access.

 DOI: https://doi.org/10.1109/ACCESS.2023.3326367

[44]. Rahman, S., Mursal, S. N. F., Latif, M. A., Mushtaq, Z., Irfan, M., & Waqar, A. (2023,
November). Enhancing Network Intrusion Detection Using Effective Stacking of Ensemble
Classifiers With Multi-Pronged Feature Selection Technique. In 2023 2nd International
Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering
(ETECTE) (pp. 1-6). IEEE.

195 Harish Padmanaban

DOI: https://doi.org/10.1109/ETECTE59617.2023.10396717

[45]. Latif, M. A., Mushtaq, Z., Arif, S., Rehman, S., Qureshi, M. F., Samee, N. A., ... & Al-
masni, M. A. Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional
Feature Selection.
https://doi.org/10.32604/cmc.2024.047621

[46]. Ara, A., & Mifa, A. F. (2024). INTEGRATING ARTIFICIAL INTELLIGENCE AND BIG
DATA IN MOBILE HEALTH: A SYSTEMATIC REVIEW OF INNOVATIONS AND
CHALLENGES IN HEALTHCARE SYSTEMS. Global Mainstream Journal of Business,
Economics, Development & Project Management, 3(01), 01-16.

DOI: https://doi.org/10.62304/jbedpm.v3i01.70

[47]. Bappy, M. A., & Ahmed, M. (2023). ASSESSMENT OF DATA COLLECTION
TECHNIQUES IN MANUFACTURING AND MECHANICAL ENGINEERING THROUGH
MACHINE LEARNING MODELS. Global Mainstream Journal of Business, Economics,
Development & Project Management, 2(04), 15-26.
DOI: https://doi.org/10.62304/jbedpm.v2i04.67

[48]. Bappy, M. A. (2024). Exploring the Integration of Informed Machine Learning in
Engineering Applications: A Comprehensive Review. American Journal of Science and
Learning for Development, 3(2), 11-21.
DOI: https://doi.org/10.51699/ajsld.v3i2.3459

[49]. Uddin, M. N., Bappy, M. A., Rab, M. F., Znidi, F., & Morsy, M. (2024). Recent Progress
on Synthesis of 3D Graphene, Properties, and Emerging Applications.
DOI: https://doi.org/10.5772/intechopen.114168

[50]. Hossain, M. I., Bappy, M. A., & Sathi, M. A. (2023). WATER QUALITY MODELLING
AND ASSESSMENT OF THE BURIGANGA RIVER USING QUAL2K. Global Mainstream
Journal of Innovation, Engineering & Emerging Technology, 2(03), 01-11.
DOI: https://doi.org/10.62304/jieet.v2i03.64

[51]. Talati, D. (2023). Telemedicine and AI in Remote Patient Monitoring. Journal of Knowledge
Learning and Science Technology ISSN: 2959-6386 (online), 2(3), 254-255.

[52]. Talati, D. (2023). Artificial Intelligence (Ai) In Mental Health Diagnosis and Treatment. Journal of
Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 2(3), 251-253.

ISSN:3006-4023 (Online),JournalofArtificialIntelligence GeneralScience (JAIGS)196

[53]. Talati, D. (2023). AI in healthcare domain. Journal of Knowledge Learning and Science Technology
ISSN: 2959-6386 (online), 2(3), 256-262.

