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ABSTRACT 

Recent work has shown that large language models, or LLMs, are capable of amazing processing 

context windows based on the nuance and complexity of respective input queries. By changing rotary 

position embedding (RoPE), a well-liked position encoding technique used by well-known LLMs like 

LLaMA and GPT-NeoX, recent studies have attempted to expand the context window of LLMs. In 

order to help LLMs efficiently adapt to a larger context window based on input query complexity and 

nuance, we identify in this work the inherent need for LLMs' attention entropy (i.e., the information 

entropy of attention scores) to maintain stability and introduce a novel extension to RoPE that 

combines adjusting RoPE's base frequency and scaling the attention logits. Our proposal, CoWPE, 

aims to accomplish this by building neighbor attention information and bi-level grouped attention in 

order to modify the context window of LLMs. While neighbor attention catches relationships between 

neighboring tokens within a given range, grouped attention collects interdependence among tokens 

that are far apart. During inference, the self-attention mechanism of the original model is utilized to 

calculate the two-level attentions. Our CoWPE requires no fine-tuning and can easily expand the 

context window of existing LLMs with a small amount of code adjustment. We carry out extensive 

tests on several benchmarks, and the outcomes demonstrate the CoWPE can successfully increase the 

context window duration of current LLMs. 
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1. Introduction 
The quantity of text data that a language model can process at once while producing answers is referred to as a 

context window (Swimm Team, 2023). The term is used to refer to the maximum quantity of information which 

can be considered by the model at one time during the formulation of answers.  For example, if the language 

model has 8000 tokens in its context window, then it implies that it can only analyze and generate a text base 

that only reaches 8000 tokens input at once. This is important since it is used to determine the extent at which a 

model can incorporate preceding text as a way of ensuring that its output is coherent. It contains every token 

found in the input text that the model examines in order to obtain context before responding. This window's size 

has a direct impact on the model's comprehension and response precision, therefore, if the window context size 

is large, the it will be able to contain a vast volume of text. Different language models process and interpret vast 

volumes of text differently because of differences in the size of the context window. A window that is too big 

could cause the model to analyze unnecessary information, whereas one that is too tiny could cause it to overlook 

important context. This implies that an appropriate size should be considered to have a precise analysis of the 

information. 

The most data that an LLM may accept as query input is known as its context length. This includes both 

the input provided by the user and any prior text the model has generated within the same session. 

Context length essentially defines how much textual information the model can retain and utilize to 

produce coherent and contextually relevant answers. Put differently, a user can enter more information 

into a prompt to get a response if the context window is longer. Token length is really used by language 

models to measure content. A token is then defined as four letters (in English) or ¾ of a word; hence, 75 

words are equal to 100 tokens. Tokens can be words, parts of words, or even individual characters, 

depending on the tokenization method used. The term “Word Tokenization” is also known as word-based 

tokenization, and this is a token that might correspond to a single word, such as "apple" or "computer." In 

light of this, the context lengths of a few of the most well-known LLMs are listed here.  

 

LLM Name Context Window Length 

Llama 2K 

Llama 2 4K 

GPT-3.5-turbo 4K 

GPT-4 8K 

Mistral 7B 8K 

Palm-2 8K 

Claude 9K 

Google Gemini  32K 

Claude 2 100,00K 

Table 1: LLMs context window lengths 
For instance, In the context of the LLaMA (Large Language Model Meta AI) model, a "2K token" refers to the 

model's ability to process up to 2,000 tokens of text at once, a 4K context window from Llama 2 is equal to six 
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pages, and a 32K context length is equal to 49 pages.  Since most contemporary LLMs are trained with a fixed 

duration of training sequences, their context window length is constrained (Zhao et al., 2023; Yang et al., 2023). 

The context window length at the pre-training phase determines it. When the pretraining context window is 

exceeded by the length of the input texts during inference, LLM behavior becomes unpredictable and 

performance degrades significantly. Long input sequences will cause the model's perplexity (PPL) to expand 

(Xiao et al., 2023; Peng et al., 2023; Han et al., 2023; Chen et al., 2023b). To increase the context window of 

pretrained LLMs, numerous techniques for doing so have been devised recently. These methods aim to extend 

the amount of text a model can consider at once, enhancing its ability to handle longer or more complex inputs 

effectively. Sparse Attention Mechanisms can be computationally expensive with large context windows. Sparse 

attention mechanisms, such as those used in models like Longformer, focus on a subset of attention heads or 

specific regions of the text, reducing the overall computational load. Hierarchical attention divides the text into 

smaller chunks and processes each chunk separately before aggregating the results. This approach breaks down 

the problem of handling long sequences into more manageable pieces (Chen et al., 2023b). Memory-Augmented 

Models use external memory mechanisms to store and retrieve information from previous contexts. Techniques 

such as memory networks or differentiable neural computers allow models to access information beyond the 

immediate context window. Chunking and Sliding Window involves breaking the input text into overlapping 

chunks or windows (Chen et al., 2023b). Each chunk is processed independently, and information from 

overlapping regions helps maintain continuity. Recurrent architectures, such as those used in transformers with 

recurrence or recursion, process sequences in a step-by-step manner, allowing for longer-term dependencies 

(Chen et al., 2023b). Newer variations of transformers, such as Linformer or Reformer, use different mechanisms 

to reduce the complexity of self-attention calculations. Attention-augmented models, such as those incorporating 

global and local attention mechanisms, combine both detailed and broad context processing to manage longer 

texts. A simple method would be to adjust these models on sufficient long texts. In addition, several techniques 

aim to increase context window length through more effective fine-tuning techniques. The terms "PI" (Chen et 

al., 2023b), "CLEX" (Chen et al., 2023a), "Yarn" (Peng et al., 2023), "PoSE" (Zhu et al., 2023), "LongLora" 

(Chen et al., 2023c), and "ABF" (Xiong et al., 2023) are a few of the prominent strategies among these modern 

approaches. These techniques seek to increase the content window on the presumption that pretrained LLMs are 

incapable of handling lengthy text. However, because of the quadratic complexity of Transformers, these 

methods usually need to be fine-tuned in order to achieve extension, which can be time- and resource-intensive. 

Furthermore, the lack of high-quality long text data makes these fine-tuning techniques difficult. Real-world 

data is typically brief, while lengthier texts frequently lack significant long-range dependencies. It is not because 

LLMs are unable of grasping extended contexts that they perform poorly when faced with lengthy texts. 

According to our investigation, the main obstacle preventing LLMs from managing lengthier contexts 

effectively is the positional O.O.D issue, also known as the Out-of-Distribution (O.O.D) issues associated with 

position-al encoding. This issue occurs when LLMs are exposed to new relative distances that were not present 

during their pretraining phase during text sequences encountered during inference that are longer than the 

pretraining context window. It is well known that when dealing with O.O.D. inputs, neural networks (NNs) can 

exhibit unpredictable behaviors (Liu et al., 2021; Shen et al., 2021; Bai et al., 2021; Zhang et al., 2023). 
1 

Remapping the unseen relative positions to those encountered during pretraining would be a logical 
and workable solution to this problem, expanding the LLMs' natural capacity to accommodate 
lengthier contexts. CoWPE maps unseen big relative positions to those encountered during 
pretraining using a straightforward floor division technique. Natural language demonstrates the 
property that meaning is largely constant throughout small ranges, such as paragraphs. 
Consequently, the relative ordering of crucial information is captured effectively when near or even 
identical position encodings are used. This methodical technique perfectly complements the 
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functionality of the floor operation. Furthermore, this same idea is also shared by T5 (Raffel et al., 
2020) and iRPE (Wu et al., 2021). 
 

 
Figure 1: LLM's context window mapping 

Our suggestions can be summarized as below: 

 By mapping the unobserved large relative locations at inference to known positions at 
training, we propose CoWPE, which aims to enlarge the context window of LLMs without 
any fine-tuning. LLMs are able to preserve coherence in complicated context windows as 
a result.  

 Even if they haven't seen exceptionally long texts throughout training, LLMs with RoPE 
are naturally adept at handling lengthy materials. 
 

2. Related Work 
The increasing demand for machines to handle complicated context windows, such as translation, 

summarization, information retrieval, conversational exchanges, etc., is the reason for the necessity for 

generalized models. Significant advances in language models have been observed recently, mainly due to 

the availability of large-scale training data, enhanced computational capabilities, and transformers 

(Vaswani et al., 2017). By enabling the development of LLMs that can mimic human-level performance on 

a variety of tasks, these advancements have brought about a fundamental transformation (Adiwanrdan et 

al., 2020). Modern artificial intelligence systems known as large language models (LLMs) are able to 

comprehend and produce text with cohesive communication, as well as generalize to multiple tasks 

(Radford et al., 2019). In the past, statistical language modeling gave way to neural language modeling, 

which in turn led to pre-trained language models (PLMs) and finally to LLMs in natural language 

processing (NLP). PLMs are trained in a self-supervised context on a large corpus of text (Chang et al., 

2018) with the goal of learning a generic representation that is shareable among diverse NLP tasks, in 

contrast to conventional language modeling (LM), which trains task-specific models in supervised settings. 

PLMs outperform classical language modeling (LM) in terms of performance increases after being adjusted 

for downstream workloads. Because larger PLMs yield greater performance advantages, PLMs are being 

replaced with LLMs by drastically raising model parameters. 
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Figure 2: The trend of papers released over years containing keywords "Large Language Model", 

"Large Language Model + Context window", and "Large Language Model + Input Query 

complexity and nuance" 

 

When given work descriptions and examples, LLMs respond to task requests with accuracy. Pre-

trained LLMs, however, perform worse in zero-shot situations than in few-shot scenarios and are 

unable to understand human intent. The improvement of generalization to unseen tasks is achieved 

by fine-tuning them with task instructions data (Chung et al., 2022) and aligning with human 

preferences (Touvron et al., 2023). This leads to a considerable improvement in zero-shot 

performance and a decrease in misaligned behavior. Numerous LLMs have been put out in the 

literature in response to this development (Zhang et al., 2022). Figures 1 and 2 illustrate an 

increasing trend in the quantity of LLMs that have been released and the names of a few notable 

LLMs that have been suggested over time. Early LLM research used models like T5 and mT5. 
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Figure 3: LLM releases are shown chronologically, with orange cards corresponding to "instruction-tuned" 

models and blue cards representing "pre-trained" models. Models with an upper half indicate open-source 

availability, whereas models with a lower half indicate closed-source availability. 

 

3. Preliminary 

 

3.0. Context Window Position Encoding (CoWPE).  

Context window encoding enriches the LLM context window with additional data that adjusts the word's 

inference based on the input query complexity in the model’s prompt sentence. As a result, the pattern can be 

identified based on the word order even in cases where two sentences include the same term. The "position 

encoding model" is used to determine the context window’s position hence creating a distinct vector for every 

position. Rectangles are used to symbolize these. The word embedding and the encoding vector space have the 

same size, therefore they go together. The resultant vectors are passed into the Transformer and are now rich in 

positional data. After then, the data is processed by the Transformer using a multi-layered feed network to 

generate the output. Large language models (LLMs) based on transformers. 

 

 

Figure 4: Context Window Position Encoding Adjustment 
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In most LLM models, context windows can be adjusted by first deciding which tokens should be included when 

measuring distance using their context vectors. To do that, a context window adjustment value is computed for 

every complex and nuance input query qi and nuance kj;  

 

             gij=σ(𝐪i⊤𝐤j)                                    (1) 

 

j is less than i and omega is our sigmoid function. An adjustment value of 1 could imply that the context 

window will be adjusted in the measured position while a value of 0 means it will be ignored. The 

adjustment is premised on the complexity and nuance of the input query. 

 

𝑃𝑖𝑗 =∑gik

𝑖

𝑘=𝑗

 

 

Next, the context window position adjustments are calculated by adding the adjustment value between the 

current input query position and the targeted prompt token. Suppose the adjustments are always 1, then (pij = i − 

j + 1) and we recover tokens based on the input query’s positions. As a result, CoWPE can be thought of as 

relative PE expanded. But generally speaking, pij can represent the number of characters, the count of certain 

context window character kinds like nouns or numerals, or other ideas the Transformer thinks helpful during 

training. 

 

 

Figure 5: CoWPE 

 

3.1. Adjustment Window Visualization.  
The sine and cosine functions are combined with the encoding function to produce different signals. Due to the 

selection of sine and cosine powers, the model can generate long sequences that are not encountered during 

training, providing a way to encode location information that is easy for the model to understand. This can be 

translated to a corresponding mathematical formula 

                f(x) = exp(x*c)                              (3) 

 

whereby x indicates the adjustment location along the context window dimension of d_model/2 and c refers 

to a  negative constant -math.log(10000.0) / d_model. The corresponding plot can be seen as indicated in 

the figure below. The various patterns observed in the plot above ensures that every location in the context 

window has a distinct encoding during adjustment, which aids the model in differentiating between positions. 

 



ISSN: 3006-4023 (Online)                 DOI: 10.60087                                                      Page: 445                                                                                                                                           

 

 

Figure 6: Adjustment context window visualization 

 

 

 

4. Flip-Flop LLMs adjustment model 
With reference to the LLMs context window flip flop adjustments, we look into the LLMs' innate capacity to 

adjust its context windows based on the complexity of their input queries.  Next, we the model’s ability to 

efficiently adapts the context window of current LLMs to the intricacy and subtlety of input questions without 

requiring any fine-tuning. 

 

4.0 Preliminary Analysis 

The Flip-Flop LLMs context window adjustment is cited to highlight the inability of Transformer models 

to capture characters in large context windows (Liu et al., 2024). The input query are made up of a series 

of alternating instructions (ignore, write, and read; iwr), each instruction is followed by a single bit of data, 

0 or 1, which the model must memorize if it follows w, or recall the last memory if it follows r. Every input 

query string will undoubtedly begin with w and end with r. For instance, given the string the anticipated 

output is 1 because the previous write operation is followed by 1.  The model must be able to focus intently 

on the most recent instance of the w in order to do this task. symbol, whose location changes between 

sequences as a result of disregarding instructions. In-distribution and out-of-distribution (OOD) test sets 

are defined by the job, with the latter increasing the distance to the final write with an increase in the 

quantity of ignore command. 

For models with dimension 256, 4 heads, and 4 layers, we duplicate the setup outlined in Liu et al. (2024) 

and report test error after 10K training steps. Table 2 (left) presents the findings. They demonstrate how 

CoWPE performs better than current techniques, enabling the model to learn not only the in-distribution 

job but also to generalize to OOD sequences, which is a capability that current PE techniques are unable to 

offer. This is made feasible by CoWPE, which enables the model to use the keys of particular tokens to 

adjust their counts into the positional embedding, thereby turning on the adjustment function for those 

tokens and attending to their last-seen positions. For instance, position 1 will correspond if the 

adjustments are 1 solely on write tokens. 
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Table 2: Context Window adjustment based on complexity 

Flip-Flop Context Window Adjustment 

PE method in-domain OOD longer context Window OOD shorter context Window 

  (wpass=50) (wpass=100) (wpass=20) 

Relative PE 2.1 10.3 35 

CoWPE 0.2 0 8 

 

 

 
 
 
 
 

5. LLMs Adjustment Modelling 
Our dataset, the Wikitext-103 dataset (Merity et al., 2017), which comprises 100M tokens taken from 

Wikipedia, to evaluate our approach on a language modeling job. We train a Transformer model with 15 

layers and a hidden size of about 800, matching the design of GPT-2 (Radford et al., 2019). Using a batch 

size of 65, we train using the negative log-likelihood loss for 100 epochs. Although the maximum position 

value in CoWPE is set to a far smaller value of p, the model has a context size of 1024. In Table 5, we 

compare various context window position encoding techniques. The worst performing is Absolute PE. 

CoWPE performs better than relative PE and gets much better when added to relative PE. This demonstrates 

that, even in language modeling in general Context Window position encoding helps a lot. Refer to the table 

below: 

 
Wikitext-103 and Code 

PE Method Params (M) Test PPL 

RoPE 18.9 5.1 

CoWPE 26 4.3 

CoWPE + 

RoPE 

19.3 7 

Table 3: Context Window encoding comparisons 

 
 
CoWPE can direct attention to abstract items within the context window based on the analysis. We 

demonstrate how location alone on Wikitext-103 can draw attention. Because CoWPE is contextualized, 

context window characters can be adjusted according to their complexity. As seen in the plots in Figure 7, 

the segments are discovered to be split on the left by newline tokens (shown by black plus signs), and 

separated on the right by section names such as "= = Description = =" (marked in a similar manner). 
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Figure 7: Adjustments based on Input query complexity 

 

 

 

CoWPE can be used to adjust context window positions to a significantly greater number of tokens since it 

bases its assignment of positions on context window. The number of adjustments will differ for every 

sample, even though the number of tokens was set during training. As a result, tokens that are outside of 

T's training span may nevertheless receive position values that fall inside of p max, the maximum value. 

On the other hand, each token position is associated with an embedding in relative PE. As a result, those 

tokens won't have any position embedding added to them when there are T ′ − T unobserved positions 

throughout test time. We evaluate a variation of relative PE where unseen positions leverage the embedding 

problem. Longer context window adjustments result in poorer adjustments in relative PE. In comparison, 

the relative-capped variant performs far better. Still, CoWPE performs better than it, and the difference 

grows when the context window adjustment is substantially longer than the training environment as seen 

in the graphical representations in Figure 8 below: 
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Figure 8: Context window adjustment plot 

 

 
6. Conclusion 

 

LLMs with big context windows usually lack the accuracy and reliability of smaller sizes, even while they offer 

more possibilities, boost efficiency, and can be applied to a higher range of use situations. There's going to be a 

lot of effort. Thankfully, LLM development is still in its early stages, and a large number of academics and 

producers of AI solutions are dedicated to discovering workable solutions, and they are moving in that direction 

at a pace that is encouraging. 

In this research, we contend that LLMs possess an innate capacity to manage lengthy sequences, and we suggest 

utilizing CoWPE as an a LLM context window adjustment technique that departs from the token-based position 

paradigm by adjusting context window position based on input query nuance and complexity. This method 

works well on many activities and gives you more flexibility when addressing people based on their position. 

Although the scope of this research was limited to the text and code domains, CoWPE could be extended to 

other domains, such as speech and video, where token position appears even less appropriate intuitively. Using 

CoWPE to train larger models and track their performance on downstream tasks is an additional approach worth 

investigating. 
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