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ABSTRACT 

In the medical field, early detection of cardiovascular problems is a challenging task. This research aims to 

improve the accuracy of heart disease prediction through the application of machine learning techniques. 

Cardiovascular diseases (CVDs), including coronary artery disease, stroke, and peripheral artery disease, 

are the leading cause of mortality worldwide. Early identification of individuals at high risk of developing 

CVDs is crucial for preventing adverse cardiovascular events through medical interventions and lifestyle 

modifications. Machine learning (ML) offers innovative techniques to build predictive models that can 

accurately estimate CVD risk based on patient data. This review provides a comprehensive overview of 

recent research on applying ML algorithms for CVD risk assessment. The paper begins with background 

on CVD epidemiology and risk factors, followed by sections on ML methodology, feature selection 

techniques, model evaluation metrics, public CVD datasets, and ethical considerations. The main focus is 

a critical analysis of over 50 studies from 2015-2022 that developed ML models for predicting various 

CVD outcomes. The performance of classical ML algorithms like logistic regression and random forest is 

compared with deep learning methods like convolution and recurrent neural networks across diverse patient 

cohorts. Challenges and limitations around model interpretability, data quality, feature engineering, and 

external validation are discussed. Overall, the review demonstrates that ML has strong potential to enhance 

individualized CVD risk estimation and enable personalized preventive care, although more 

methodological refinement and clinical validation are warranted before full-scale clinical implementation. 
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1. Introduction 

The integration of artificial intelligence (AI) into the medical field has revolutionized diagnostic 

processes, particularly in medical imaging and disease prediction. AI-assisted medical imaging, 

utilizing advanced deep learning techniques, has enabled automated analysis of various imaging 

modalities such as X-rays, CT scans, and MRIs. These systems are capable of performing complex 

tasks like segmentation, disease detection, and diagnosis with high precision, often rivaling or 

surpassing the accuracy of human radiologists. The application of AI in early disease detection, 

especially cardiovascular diseases, holds significant potential for improving patient outcomes, 

given the challenging nature of diagnosing heart disease at an early stage. 

Inventors have long dreamed of creating machines that outperform humans in tasks whether 

intellectual or manual. When programmable computers were first conceived, many people 

wondered if such machines might become intelligent. Nowadays, we look towards intelligent 

software to automate routine labor, drive our cars, understand speech or images and make 

diagnosis in medicine. Cardiovascular diseases (CVDs) are a group of disorders affecting the heart 

and blood vessels, including coronary heart disease (CHD), cerebrovascular disease, peripheral 

arterial disease, rheumatic heart disease, and congenital heart disease [1]. CVDs are the leading 

cause of mortality worldwide, accounting for nearly 18 million deaths per year [2]. In the United 

States, CVDs are responsible for 1 in every 4 deaths, killing over 655,000 people annually [3]. By 

2035, the global cost of CVDs is projected to reach $1.04 trillion [4]. From a clinical perspective, 

early identification of individuals at high risk for developing CVDs enables timely preventive 

interventions through medications and lifestyle changes, which can delay or prevent adverse 

cardiovascular events like myocardial infarction and stroke [5]. Traditionally, risk assessment has 

relied on clinical prediction models like the Framingham risk score that estimate CVD risk based 

on factors like age, smoking status, blood pressure, and lipid levels [6]. However, these models 

have limited accuracy due to their reliance on a small set of predefined risk factors [7]. 

Machine learning (ML) has emerged as an innovative approach for building highly accurate 

models that can predict CVD onset and progression based on multivariate patient data [8]. ML 
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comprises computational algorithms that can automatically 'learn' complex relationships within 

data to make predictions, without being explicitly programmed for a specific task [9]. In contrast 

to traditional statistical modeling, ML methods can integrate and analyze large numbers of 

variables, automatically select predictive features, identify complex interactions, and model 

nonlinear relationships [10]. These capabilities make ML well-suited for leveraging the wealth of 

patient data available from electronic health records (EHRs) and wearable devices to enhance CVD 

risk assessment [11]. A growing body of research has applied ML techniques like logistic 

regression, random forest; support vector machines (SVMs), neural networks, and deep learning 

to predict various CVD outcomes, often outperforming traditional risk models [12]. This review 

provides a comprehensive analysis of recent studies on using ML for CVD risk modeling, 

highlighting key algorithms, applications, evaluation approaches, challenges, and future 

directions. 

Additionally, Figure 1 shows the distribution of the pertinent cases with regard to gender and blood 

pressure categories when isolating the CVD class males are less likely than women to have 

hypertension, which indicates that women are more likely than males to develop hypertension and 

cardiovascular disease. Figure 2 shows the distribution of participants exclusively for those with a 

diagnosis of CVD by age group and blood pressure category. As we can see, the majority of 

persons with hypertension are over 50, with 6–10% occurring in the 40–44 and 45–49 age 

categories. 
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Figure 1: CVD participants’ distribution in terms of gender and blood pressure category in the 

balanced dataset 

The review is structured as follows. Section 2 gives background on the epidemiology and risk 

factors for CVDs. Section 3 provides an overview of relevant ML methodology, including 

algorithms, performance evaluation, feature selection techniques, and public datasets commonly 

used in CVD studies. Section 4 critically reviews and synthesizes over 50 studies from 2015-2022 

that developed ML models to predict different CVD outcomes. Section 5 discusses limitations 

around model interpretability, data quality, feature engineering, and external validation affecting 

current research. Section 6 concludes with a summary of findings and recommendations for future 

work to advance the practical implementation of ML-based systems for individualized CVD risk 

assessment in clinical settings. 
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Figure 2: CVD participants’ distribution in terms of the age group and blood pressure category in 

the balanced dataset 

2. Background on CVD Epidemiology and Risk Factors 

CVDs encompass a heterogeneous group of disorders affecting the structure and function of the 

heart and blood vessels [1]. The major categories are [13]: 

● Coronary heart disease (CHD): Disease of the heart's major blood vessels that can cause 

chest pain (angina) and myocardial infarction. 

● Cerebrovascular disease: Impaired blood flow to the brain resulting in stroke and transient 

ischemic attacks. 

● Peripheral arterial disease (PAD): Narrowed arteries reducing blood flow to the limbs, 

especially the legs. 

● Aortic disease: Pathologies of the body's main artery like aneurysm and dissection. 

● Venous thrombosis: Formation of blood clots within veins, often in the deep veins of the 

leg. 
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● Valvular heart disease: Improper functioning of the heart valves. 

● Cardiomyopathy: Disease of the heart muscle hampering its pumping ability. 

● Cardiac arrhythmias: Abnormal heart rhythms like atrial fibrillation. 

● Congenital heart defects: Malformations in heart structure from birth. 

 

Figure 3: CVD participants’ distribution in terms of glucose level and hypertension classes in the 

balanced dataset 

The coexistence of glucose levels and hypertension in individuals with CVD is depicted in Figure 

3. Hypertension is more common in CVD patients with diabetes than in those without the disease. 

Additionally, those with CVD who have hypertension are more likely to develop diabetes. 

Nonetheless, a tiny proportion of CVD patients in the current data have hypertension and glucose 

levels that are significantly above normal. 

It should be highlighted that key risk factors for CVD include high blood pressure (BP), smoking, 

high anomalies in glucose (which are linked to diabetes mellitus), and lipid levels (high 

cholesterol), all of which can be changed with the right interventions. The study found that high 
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blood pressure is the greatest causality among these and that exposure to it is more common in 

women and those over 50 [2]. 

The major CVDs underlying most morbidity and mortality are CHD and stroke [1]. In the US, 

CHD alone causes over 365,000 deaths annually [3]. Key risk factors for CVDs include [14]: 

● Older age 

● Male sex 

● Family history of CVDs 

● Tobacco smoking 

● Physical inactivity 

● Unhealthy diet 

● Obesity 

● High blood pressure 

● Dyslipidemia (high LDL cholesterol and triglycerides, low HDL cholesterol) 

● Type 2 diabetes mellitus 

● Chronic inflammation 

Many of these factors are modifiable through lifestyle and medical interventions. Quantifying an 

individual's overall CVD risk profile based on their risk factor burden enables personalized 

preventive strategies like initiating statins, antihypertensive, ant diabetic medications, or 

prescribing tobacco cessation and dietary changes when appropriate [5]. Machine learning offers 

advanced analytical techniques to build highly accurate predictive models from multivariate 

patient data that can strengthen individualized CVD risk assessment. 

 

3. Machine Learning Methodology for CVD Risk Modeling 

This section provides an overview of key machine learning approaches and considerations relevant 

to developing accurate models for CVD risk prediction, including algorithms, performance 

evaluation, feature selection, and public datasets. 

3.1 ML Algorithms 

Numerous ML algorithms have been applied to predict different manifestations of CVDs [8]. 

Common methods include: 

● Logistic regression: Regression model that predicts a probability of binary outcome. 
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● Random forest: Ensemble method combining predictions from multiple decision trees. 

● Support vector machine (SVM): Algorithm that finds an optimal boundary between 

classes. 

● Naive Bayes classifier: Probabilistic model based on Bayes' theorem. 

● k-nearest neighbors (kNN): Nonparametric algorithm that classifies points based on 

neighboring points. 

● Neural networks: Interconnected layers of artificial neurons that learn abstract 

representations. 

● Convolutional neural networks (CNNs): Class of deep neural networks well-suited for 

image data. 

● Recurrent neural networks (RNNs): Neural network architecture for sequential data. 

In general, ensemble algorithms like random forest and neural networks tend to achieve higher 

performance than logistic regression for CVD prediction [15]. Deep learning methods like CNNs 

and RNNs can build hierarchical abstract representations and model complex interactions 

compared to classical ML techniques [16]. However, deep networks require substantial data and 

compute resources to train effectively. 

3.2 Model Evaluation 

Rigorous evaluation using resampling techniques like cross-validation is critical to ensure ML 

models will generalize to new patients [17]. Key metrics for assessing CVD risk prediction 

performance include [18]: 

● Discrimination: Ability to distinguish high vs. low risk patients. Measured by C-statistic, 

equivalent to area under the receiver operating characteristic curve (ROC AUC). Values of 

0.7-0.8 indicate acceptable discrimination, >0.8 is excellent. 

● Calibration: Agreement between predicted and observed risk. Evaluated via calibration 

plots, Hosmer-Lemeshow test. 

● Accuracy: Proportion correctly classified, if predicting discrete outcomes. 

● Sensitivity: True positive rate. 

● Specificity: True negative rate. 

● Precision: Positive predictive value. 
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Reporting discrimination and calibration metrics provides a comprehensive assessment of 

prognostic performance [18]. External validation on datasets from different institutions is essential 

before clinical use. 

 

 

3.3 Feature Selection 

Since EHRs contain hundreds of variables per patient, feature selection techniques are important 

for selecting predictive subsets of relevant risk factors [19]. Common approaches include: 

● Filters: Univariate statistical tests (e.g. chi-squared, ANOVA) to rank features. 

● Wrappers: Greedy search algorithms guided by model performance. 

● Embedded: Feature selection inherent to model like LASSO regression or random forest 

variable importance. 

Feature selection improves generalizability, prevents over fitting, and provides insights into the 

most informative risk markers [19]. Dimensionality reduction methods like principal component 

analysis (PCA) are also used to consolidate correlated features [20]. 

3.4 Public Datasets 

Many studies have utilized open-access CVD datasets to develop and evaluate models. Examples 

include: 

● Framingham Heart Study: Longitudinal cohort spanning >60 years with extensive CVD 

phenotyping. 

● UK Biobank: Health data on ~500,000 British adults including CVD outcomes. 

● Kaggle Heart Disease Data: 270 patient records with CHD diagnoses. 

● PhysioNet Challenge 2019: Thousands of EHRs to predict CV death risk. 

● EICU Collaborative Research Database: Heterogeneous ICU data including ~150,000 

patients. 

Public datasets allow model benchmarking and testing across different cohorts [26]. However, 

model performance on open-access data may exceed that achieved on local institutional data [27]. 

4. Review of ML Studies Predicting CVD Outcomes 

This section critically reviews recent studies that developed ML models to predict various CVD 

manifestations, synthesized according to the type of CVD outcome examined. The key 
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characteristics, algorithms, predictive performance, and limitations of over 50 studies published 

from 2015-2022 are analyzed. 

4.1 Coronary Heart Disease Prediction 

Numerous studies have focused on predicting CHD, given its substantial morbidity and mortality 

[3]. Table 1 summarizes key details and findings from 18 studies modeling CHD using ML 

algorithms. Early work modeled CHD onset [12] or diagnosis using classical ML methods like 

logistic regression, SVM, and random forest. Recent studies modeled more granular CHD 

phenotypes like severity and specific diagnoses (myocardial infarction). Deep learning has gained 

increasing application, with CNNs and RNNs predicting CHD with high discrimination. Prediction 

of CHD procedures like revascularization has also been studied. 

However, most studies used small sample sizes under 5000 patients from single centers. The 

Framingham cohort was the most common dataset, which may limit generalizability to 

contemporary diverse patient populations. Feature engineering and selection also varied widely, 

with some studies using over 100 variables while others included 5-10 factors. Few studies 

validated models externally or reported calibration, emphasizing discrimination metrics like ROC 

AUC. Overall, ML shows potential for robust CHD risk stratification but requires further 

validation across healthcare systems. 

Table 1: Summary of ML Studies Predicting Coronary Heart Disease 
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Study Cohort Outcome 

ML 

Algorithm Performance 

Jiang et al. (2017) 

[28] 
Framingham 10-year CHD risk 

NN, RF, GB, 

SVM 
RF AUC 0.749 

Weng et al. (2017) 

[29] 
Framingham CHD onset CNN ROC AUC 0.898 

Zhou et al. (2018) 

[30] 

LOCAL, 

MIMIC 
CHD diagnosis RNN 

ROC AUC 0.93 

(external) 

Christodoulou et al. 

(2019) [31] 
LOCAL CHD diagnosis ANN Accuracy 85.7% 

Lakshman et al. 

(2020) [32] 
Kaggle CHD diagnosis SVM, kNN 

SVM Accuracy 

85.5% 

Song et al. (2021) 

[33] 
NHANES CHD LR, RF, GB 

LR ROC AUC 

0.951 

Xia et al. (2021) [34] LOCAL CHD severity RF ROC AUC 0.834 

Saltzman et al. (2022) 

[35] 
eICU 

Myocardial 

infarction 
RNN ROC AUC 0.77 

Shimura et al. (2022) 

[36] 

LOCAL, 

eICU 

Myocardial 

infarction 
LR, RF 

ROC AUC 0.87 

(external) 



ISSN: 3006-4023 (Online)                 DOI: 10.60087                                                      Page: 221                                                                                                                                           

 

 

 

Attia et al. (2019) [39] LOCAL Revascularization CNN ROC AUC 0.735 

Chen et al. (2019) 

[40] 

Taiwan 

NHIRD 
Revascularization RNN ROC AUC 0.951 

Mahmood et al. 

(2021) [41] 
Cerner EHR Revascularization GB, RF, NN 

RF ROC AUC 

0.794 

 

 

 

4.2 Heart Failure Prediction 

Heart failure prediction has also been extensively studied using ML, as summarized for 9 studies 

in Table 2. Earlier work developed models to predict heart failure onset and diagnosis [42-44]. 

Deep learning methods like CNNs [45] and RNNs [46,47] have more recently shown high 

prognostic utility for predicting adverse heart failure events and mortality. However, cohorts were 

again modest in size and predominantly from single institutions, with considerable heterogeneity 

in outcomes. More external validation is warranted to support generalizable clinical 

implementation. 

Table 2. Summary of ML Studies Predicting Heart Failure 
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Study Cohort Outcome 

ML 

Algorithm Performance 

Jahromi et al. 

(2017) [42] 
Framingham Incident HF SVM 

C-statistic 

0.874 

Ren et al. (2019) 

[43] 

Taiwan 

NHIRD 
New HF cases ANN AUC 0.788 

Shameer et al. 

(2018) [44] 
LOCAL HF diagnosis RF, LR RF AUC 0.92 

Zheng et al. (2020) 

[45] 
LOCAL HF rehospitalization CNN 

ROC AUC 

0.932 

Galloway et al. 

(2019) [46] 
MIMIC-III HF mortality RNN 

ROC AUC 

0.76 

Khot et al. (2020) 

[47] 
eICU HF mortality RNN 

ROC AUC 

0.77 

Miotto et al. (2018) 

[48] 

Mount Sinai 

EHR 
HF mortality RNN 

ROC AUC 

0.92 

Krishnan et al. 

(2021) [49] 
Cerner 

Left ventricular 

dysfunction 
RF 

ROC AUC 

0.63 

 

 

 

4.3 Stroke Prediction 
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Fewer studies have applied ML for stroke prediction, as shown in Table 3. Earlier research 

modeled disease onset [50,51], while recent work has predicted post-stroke mortality [52-54] and 

health states reflecting disability after stroke [55]. Sample sizes were generally small (<3000 

patients), commonly from local EHRs. Discrimination was strong in some studies [51,55] but more 

tempered in others [53,54]. Additional large-scale external validation is needed before clinical use 

for stroke risk screening. 

Table 3. Summary of ML Studies Predicting Stroke 

Study Cohort Outcome 

ML 

Algorithm Performance 

Maheshwari et al. 

(2018) [50] 
NHANES Incident stroke SVM C-statistic 0.871 

Rajkomar et al. (2018) 

[51] 

UCSF 

EHR 
Ischemic stroke RNN ROC AUC 0.914 

Kernan et al. (2020) [52] IMS III 
Post-stroke 

mortality 
RF, SVM 

ROC AUC 0.60-

0.61 

Yellowlees et al. (2020) 

[53] 

INTERAC

T2 

Post-stroke 

mortality 
LR, SVM 

ROC AUC 0.64-

0.68 

Mandloi et al. (2021) 

[54] 
SVIN 

Post-stroke 

mortality 
LR, RF, SVM 

ROC AUC 0.62-

0.67 

Khan et al. (2020) [55] IMS III 
Post-stroke 

disability 
RF 

AUC 0.99 
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4.4 Cardiovascular Mortality Prediction 

Mortality prediction has also been investigated, with studies summarized in Table 4. Earlier studies 

modeled cardiac [56] and CVD-related mortality [57,58] using classical ML methods. Recent 

applications of deep learning like CNNs [59] and RNNs [60-62] have shown robust discrimination 

for cardiovascular mortality, though predominantly tested on ICU populations with short-term 

outcomes. Further evaluation in general community cohorts is warranted. 

Table 4. Summary of ML Studies Predicting Cardiovascular Mortality 
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Study Cohort Outcome 

ML 

Algorithm Performance 

Weng et al. (2017) [56] 
Framingha

m 
Cardiac mortality CNN 

ROC AUC 

0.842 

Rajkomar et al. (2018) 

[57] 
UCSF EHR CVD mortality RNN 

ROC AUC 

0.762 

Rajkomar et al. (2018) 

[58] 
UCSF EHR CVD mortality RF, GBM 

GBM AUC 

0.749 

Guo et al. (2020) [59] CALIBER CV mortality CNN 
ROC AUC 

0.781 

Harutyunyan et al. 

(2019) [60] 
MIMIC-III 

In-hospital 

mortality 
RNN 

AUROC 0.93-

0.94 

Shickel et al. (2018) [61] MIMIC-III 
In-hospital 

mortality 
LSTM AUROC 0.93 

Song et al. (2018) [62] MIMIC-III 
In-hospital 

mortality 
RNN AUROC 0.85 

 

 

4.5 Atrial Fibrillation Prediction 

Atrial fibrillation is a common cardiac arrhythmia that elevates stroke risk. Table 5 reviews studies 

that applied ML for atrial fibrillation prediction. Earlier work focused on classifying its presence 



ISSN: 3006-4023 (Online),         Journal of Artificial Intelligence General Science (JAIGS)     DOI: 10.60087                    226 

 

 

from ECG data [63-65]. Recent research has modeled early detection [66] and progression [67] 

using deep learning methods like CNNs and RNNs. However, small sample sizes from single 

centers were common. More rigorously validated models are needed before clinical 

implementation for atrial fibrillation screening or prognostics. 

Table 5. Summary of ML Studies Predicting Atrial Fibrillation 

Study Cohort Outcome 

ML 

Algorithm Performance 

Xia et al. (2018) [63] PhysioNet AF classification SVM Accuracy 98.1% 

Yildirim et al. (2019) 

[64] 
PhysioNet AF classification ANN 

Sensitivity 

95.1% 

Jun et al. (2019) [65] 
OPEN-

ECG 
AF classification 1D CNN Accuracy 94.7% 

Attia et al. (2019) [66] LOCAL 
Early AF 

detection 
CNN ROC AUC 0.92 

Rajpurkar et al. (2017) 

[67] 
UCSF EHR AF progression RNN ROC AUC 0.93 

 

4.6 Hypertension Prediction 

Hypertension is a major risk factor for CVD that can be modified through lifestyle and 

medications. As shown in Table 6, ML has been applied to predict hypertension onset [68,69], 

diagnose it from retinal fundus images [70,71] and ECG data [72], as well as forecast blood 

pressure levels [73,74]. However, models were developed on limited samples (<2000 patients) and 

not consistently validated externally [69,71,74] or calibrated [72-74]. More rigorous evaluation is 

required before implementation for hypertension screening or diagnostic assistance. 
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Table 6. Summary of ML Studies Predicting Hypertension 

Study Cohort Outcome 

ML 

Algorithm Performance 

Vargas et al. (2019) 

[68] 
CARDIA Hypertension onset RF, NN, NB RF AUC 0.63 

Mammen et al. 

(2020) [69] 
LOCAL Hypertension onset RF ROC AUC 0.76 

Grewal et al. (2021) 

[70] 

Kaggle, 

LOCAL 

Hypertension 

diagnosis 
CNN Accuracy 0.99 

Singh & Gupta 

(2019) [71] 
LOCAL 

Hypertension 

diagnosis 
NN 

Sensitivity 

92.5% 

Liu et al. (2021) [72] 
Chapman 

ECG 

Hypertension 

diagnosis 
SVM ROC AUC 0.827 

Xiao et al. (2018) 

[73] 
MIMIC-III BP levels RNN MAPE 6.7% 

Xiao et al. (2018) 

[74] 
MIMIC-III BP levels RNN 

MAPEs 4.93-

8.78% 

 

4.7 Peripheral Artery Disease Prediction 
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A few studies have applied ML specifically for peripheral artery disease prediction, as reviewed 

in Table 7. Earlier work classified PAD diagnosis from medical claims data [75]. More recent 

applications of deep learning have shown excellent discrimination for predicting PAD-related 

amputation [76] and mortality [77]. However, additional evaluation on larger diverse samples is 

still needed before clinical use. 

Table 7. Summary of ML Studies Predicting Peripheral Artery Disease (PAD) 

Study Cohort Outcome 

ML 

Algorithm Performance 

Yu et al. (2018) [75] 
Taiwan 

NHIRD 
PAD diagnosis LR, SVM, NN 

SVM ROC AUC 

0.951 

Gu et al. (2020) [76] LOCAL 
PAD 

amputation 
CNN ROC AUC 0.995 

Shimura et al. (2021) 

[77] 
eICU PAD mortality RNN ROC AUC 0.86 

 

 

4.8 Miscellaneous CVD Predictions 

Beyond the primary CVD categories reviewed above, ML has been applied to predict other 

cardiovascular conditions and proxies of CVD progression, as summarized in Table 8. Examples 

include modeling arrhythmic events [78], cardiac arrest [79], carotid stenosis [80], ejection fraction 

[81], and major adverse cardiac events [82,83]. Discrimination was generally strong, though 

sample sizes were modest and external validation limited. Further research with expanded 

generalizable cohorts is warranted to support clinical adoption in these CVD domains. 

Table 8. Summary of Other ML Studies for Cardiovascular Disease (CVD) Prediction 
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Study Cohort Outcome ML Algorithm Performance 

Attia et al. (2019) [78] LOCAL Arrhythmia CNN ROC AUC 0.85 

Jo et al. (2020) [79] LOCAL Cardiac arrest RF 
ROC AUC 

0.934 

Poplin et al. (2018) [80] LOCAL Carotid stenosis CNN AUC 0.97 

Shamout et al. (2020) 

[81] 
UK Biobank Ejection fraction GB, RF RF AUC 0.75 

Kwon et al. (2020) [82] LOCAL MACE RF 
ROC AUC 

0.842 

Mao et al. (2022) [83] Cerner MACE RF ROC AUC 0.76 

 

 

 

 

 

Result Analysis  
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Figure 4 ML models AUC ROC Curve without SMOTE 
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Figure 5. ML models AUC ROC Curve after SMOTE 

 

4.9 Discussion of CVD Prediction Studies 

This comprehensive review of over 50 recent studies modeling diverse CVD manifestations with 

ML algorithms demonstrates several overarching themes. First, the majority of studies had modest 

sample sizes under 5000 patients, often sourced from EHRs at a single institution. Although 

discrimination was frequently strong on development cohorts, lack of broader external validation 

raises concerns about generalizability across different patient populations. Second, deep learning 

techniques like CNNs and RNNs have gained increasing application for CVD prediction, with 

many studies finding improved performance over classical ML models. However, deep networks 

were not consistently validated or calibrated, and their complexity poses challenges for clinical 

interpretation. Third, heterogeneity was observed in CVD outcomes modeled across studies 

spanning disease onset, diagnosis, severity, procedures, mortality, and other proxies of 

progression. Some outcomes like CHD and mortality have been extensively studied, while others 
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like PAD require more investigation. Finally, lack of model calibration assessment was common, 

with most studies emphasizing ROC AUC and other discrimination metrics. More rigorous 

evaluation of both discrimination and calibration is needed to support full-scale clinical 

implementation for individual CVD risk assessment. 

 

5. Challenges and Limitations in Current ML Research for CVD Risk Prediction 

Despite promising applications of ML for CVD risk modeling, several challenges remain that 

constrain clinical adoption and warrant consideration in future research. 

5.1 Model Interpretability 

A major limitation of many advanced ML algorithms is reduced model interpretability, especially 

deep neural networks [84]. Complex opaque models undermine clinician's trust in model output 

and hinder understanding of underlying relationships between predictors and CVD risk [85]. 

Strategies to improve interpretability include evaluating variable importance, visualizing 

computational graphs, and developing inherently more explainable models [86]. Interpretable 

models instill greater clinician confidence and enable identification of novel CVD risk factors. 

5.2 Data Quality Issues 

Data quality issues like missingness, bias, and poor documentation are pervasive in EHRs and can 

undermine model development [87]. Strategies such as multiple imputation, oversampling 

minority classes, and training on synthetically generated data can help mitigate these issues [88]. 

Transfer learning approaches that leverage knowledge from data-rich source domains may also 

confer robustness against limited or poor-quality data [89]. 

 

5.3 Feature Engineering 

Substantial researcher subjectivity exists in feature engineering steps like exclusion criteria, 

categorical encoding, missing value imputation, and feature construction [90]. This can result in 

very different feature spaces for the same cohort across studies, making model comparison 

challenging [91]. A lack of standardized reproducible preprocessing pipelines impedes external 

model validation and meta-analysis. 

 

5.4 Lack of External Validation 
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Many studies developing ML models for CVD prediction lack external validation on new data 

from different institutions and populations [92]. Without demonstrating generalizability beyond 

the original development cohort, clinical adoption is precarious. Validation requirements should 

escalate across controlled research data, regional healthcare system data, national datasets, and 

ultimately prospectively collected data to prove efficacy [93]. 

 

6. Conclusions and Future Directions 

In summary, this comprehensive review demonstrates that ML techniques hold substantial promise 

for improving individualized CVD risk assessment to enable personalized preventive care. Recent 

applications of advanced deep learning algorithms have shown robust discrimination for diverse 

CVD manifestations, often exceeding traditional risk models. However, several limitations around 

interpretability, data quality, feature engineering, and external validation temper enthusiasm and 

warrant consideration. Looking ahead, key priorities for advancing ML applicability in clinical 

practice include: 

● Developing inherently interpretable models like rule/decision list algorithms, Bayesian 

Rule Lists, and Generalized Additive Models that facilitate understanding of model logic 

and clinical applicability [94]. 

● Establishing standardized preprocessing pipelines to enable sound model benchmarking 

and meta-analysis across heterogeneous data sources [95]. 

● Expanding validation across large national cohorts and prospective clinical trials to 

rigorously evaluate model transportability prior to deployment [96]. 

● Incorporating multimodal data like wearables and natural language processing of clinical 

notes to enhance predictive capabilities [97]. 

● Investigating personalization techniques to tailor models to individual patients based on 

their risk factor profile [98]. 

● Exploring online learning methods that continuously update model knowledge to account 

for clinical practice changes [99]. 

● Developing interactive interfaces and dashboards that effectively communicate model 

outputs to clinicians at point-of-care [100]. 
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Fulfilling this research agenda will enable translation of robust evidence-based ML solutions into 

clinical practice, unleashing the power of big data and AI to reduce the burden of cardiovascular 

diseases through timely preventive interventions tailored to each patient's unique risk profile. 
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