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Abstract 
 

The gut microbiome's impact on physiological processes, influenced by diet and lifestyle, is profound. Dysbiosis, an 

imbalance in microbiota composition, is associated with diseases like obesity. This review explores the gut 

microbiome's role in metabolism and calorie intake, alongside recent AI advancements impacting personalized 

nutrition. AI has revolutionized microbiome research, especially in multi-omics data analysis. AI-driven approaches 

enable the integration and interpretation of diverse omics datasets, including genomics, metabolomics, and proteomics, 

providing comprehensive insights into the gut microbiome's functional dynamics and its impact on host metabolism. 

These facilitate the identification of microbial biomarkers associated with disease states and dietary interventions, 

paving the way for personalized nutrition strategies tailored to individual gut microbiome profiles. 

 

AI platforms can also offer tailored dietary recommendations based on microbiome composition and health objectives. 

Healthcare professionals leverage AI to optimize dietary interventions, promoting gut microbiome modulation and 

preventing chronic diseases. Challenges like data standardization and privacy persist, yet addressing them is vital for 

maximizing AI's benefits in health outcomes and precision medicine. Ongoing AI and microbiome research promise 

to revolutionize personalized nutrition and metabolic health worldwide. 
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Background - Understanding the Human Gut Microbiota 

 

The human microbiota is regarded as the assemblage of microorganisms, their genetic material, and their metabolic products 

that inhabit the human body from birth and are inherited vertically.1,2 Although all bodily regions are colonized, the gut hosts 

the most significant microbial populations, a domain extensively researched.3 The gut microbiome, a complex community 

of microorganisms residing in the gastrointestinal tract, plays a crucial role in human health. Notably, while survival without 

a colon is possible, it is impossible without a small intestine, which houses the largest mucosal surfaces in the human body. 

In the small intestine that houses the majority of gut receptors, nerve and immune cells, food undergoes further digestion 

and absorption. 

 

The composition of the gut microbiota is dynamic and influenced by various factors, including diet, environment, drug 

intake, and mode of consumption.  The microbiome influences how the host processes and metabolizes dietary nutrients, 

creating a reciprocal relationship between the gut microbiome and diet. Complex biological and chemical systems interact 

to modulate an individual's dietary responses, involving the interplay of diet, host, and microbiota.4,5 The gut microbiome is 

involved in the metabolism of complex carbohydrates, synthesis of vitamins, and nutrient absorption. It also produces 

metabolites capable of affecting various physiological mechanisms within the host organism, such as inflammation, 

metabolism, and immune function. A healthy small intestine harbors a diverse array of microorganisms, predominantly 

represented by members of the Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria phyla, with Firmicutes and 

Proteobacteria being major phyla among obligate anaerobic bacteria, alongside Bacteroidetes, as noted in multiple 

metagenomic studies.6-8 This microbial community reaches its peak in the distal gut, where communities containing up to 

100 billion cells per gram can exist for several days, given that colonic transit is considerably longer than that in the small 

intestine. These microbes are excreted by the body as feces, constituting what is commonly referred to as the gut microbiome, 

which has been linked to a plethora of ailments and is profoundly influenced by diet and medications. 

 

The gut microbiome is increasingly recognized as a pivotal contributor to regulating host health, encompassing functions 

such as nutrient provision, defense against pathogens, and fostering immune system maturation.9 Indeed, the microbiota's 

role in human health and disease is substantial, sometimes likened to an overlooked organ.10 Recent studies have broadened 

our comprehension of various microbiome aspects in humans, shedding light on its influence on diverse physiological 

processes such as metabolism and energy intake. Clear associations are emerging between the microbiome and its impact on 

host metabolic processes, with significant implications for human health, particularly in light of the escalating rates of obesity 

and metabolic syndrome in Western societies.11 As our understanding of the gut microbiota's physiological role in 

metabolism advances, it elucidates the mechanisms by which alterations in its composition, both qualitatively and 

quantitatively, can precipitate metabolic disorders such as obesity.12-14 This becomes particularly pertinent amidst a global 

surge in chronic diseases like obesity, which collectively contribute to substantial mortality and morbidity worldwide.15-17 

Indeed, a substantial body of evidence has accumulated, indicating that specific dietary factors and consumption patterns, 

such as excessive intake of refined carbohydrates coupled with low fiber intake, contribute significantly to the risk of obesity 

and related conditions, including cardiovascular disease and metabolic syndrome.18  

 

Over the past decade, AI and precision medicine have exerted an equal, if not greater, impact on the trajectory of healthcare 

compared to artificial intelligence. Research in this field has progressed to comprehend how the characterization of health 

and disease states, along with treatment options for affected individuals, is precisely delineated by integrating multi-omic 

data with medical history, social/behavioral factors, and environmental insights.19 

 

Considering the significant impact of the gut microbiome on metabolism and caloric intake, alongside the advancements in 

AI applications in medicine, it becomes evident that further exploration of the gut microbiota and the integration of AI could 

lead to the development of adjunctive treatments beneficially modulating various diseases, particularly those of metabolic 

nature. While some studies have initiated assessments in these areas, the characterization of the gut microbiota remains 

incompletely understood, resulting in discordant results in some instances. Here, we offer a comprehensive review of the 

physiology and composition of the human gut microbiota, with particular emphasis on critically evaluating the current 

understanding in this field. This review aims to underscore the crucial role of the gut microbiome in regulating calorie intake 

and metabolism while highlighting how AI is transforming our understanding of the gut microbiome and its impact on these 

processes. Ultimately, unraveling the complexity of gut microbes and harnessing AI in this domain will pave the way for 

novel therapies already in development. 

 

Influence of Gut Microbiota on Calorie Intake and Metabolism 

 

Calorie intake, representing the energy derived from food consumption, stands as a fundamental aspect of nutrition and 

weight management. Historically, it was believed that calorie intake was primarily influenced by the types and quantities of 

food ingested. Emerging evidence, however, suggests that the composition of the gut microbiome also significantly 

influences calorie intake and energy balance. Certain bacterial species within the gut microbiome possess metabolic 
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capabilities facilitating the extraction of calories from the diet. These bacteria can metabolize dietary components typically 

indigestible by the human host, thus increasing the overall energy yield from food. Also, certain microbial metabolites can 

influence appetite regulation and satiety signals, thereby affecting overall calorie intake. Alterations in the gut microbiome 

composition have been associated with increased fat deposition in adipose tissue and exacerbated hepatic inflammatory 

processes, both contributing to weight gain and metabolic dysfunction. The gut microbiota can also utilize dietary 

components to produce energy and nutrients for their own growth and proliferation, further influencing the host's energy 

balance.20-21 

 

Studies have demonstrated that the gut microbiome can influence appetite and food preferences through its interaction with 

the brain-gut axis.22-23 Certain species of gut bacteria produce signaling molecules that can affect appetite-regulating 

hormones, such as leptin and ghrelin, thereby influencing feelings of hunger and satiety.24 The gut microbiome can also 

modulate taste receptors, influencing our perception of different foods and potentially affecting food choices and calorie 

intake.25 

 

 
 

Figure 1: The gut microbiota convert environmental and dietary signals into signaling molecules, affecting host metabolism and 

inflammatory pathways. Various factors like diet can alter microbiota composition. Microbial metabolites, such as SCFAs and bile acids, 

signal to various organs, influencing host metabolic pathways and inflammatory responses. The gut microbiota then transforms these 

inputs into metabolites that signal to different organs and tissues within the host, as illustrated below. Disruptions in microbial balance 

may worsen the effects of risk factors like the Western diet on obesity and metabolic disorders. Figure adapted from Schroeder BO, 

Bäckhed F. Nat Med. 2016;22(10):1079-1089. Copyright (2016) by Springer Nature.37 

 

 

The gut microbiota exerts its influence on health outcomes through the metabolization and alteration of various nutrients, 

giving rise to secondary metabolites with differing retention times, levels of bioactivity, and diverse effects. Examples of 

these metabolites include short-chain fatty acids (SCFAs), bile acids, hydrogen sulfite, trimethylamine and 
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lipopolysachharide endotoxins. Numerous metabolites produced by the gut microbiota have the ability to alter host 

metabolism and immune system pathways.26-28 They can either promote health, such as SCFAs, or exacerbate disease, such 

as bile acids or hydrogen sulfite.28,30 Further, the gut microbiota ferments complex sugars and dietary fibers that evade 

digestion by human enzymes.31 Phyla such as Firmicutes and Bacteroidetes, which exhibit some tolerance to oxygen, encode 

a variety of enzymes necessary for breaking down complex carbohydrates, including fiber and resistant starch, which would 

otherwise remain indigestible.32 This fermentation process yields SCFAs, including acetate, propionate, and butyrate, serving 

as an energy source for the host and influencing energy metabolism, glucose homeostasis and inflammation of tissues such 

as adipose.33 In particular, SCFAs have been demonstrated to influence calorie consumption and storage by regulating 

hunger, raising energy expenditure, and promoting fat oxidation.34,35 Several receptors, including free fatty acid receptor 3 

(FFAR3 or GPR41) and niacin receptor 1 (GPR109A), have been identified for SCFAs, highlighting their diverse 

physiological roles in inflammation, atherosclerosis, and pancreatic β-cell growth and insulin secretion.36  

 

Finally, the composition of the gut microbiome exhibits significant variability among patients, influenced by various factors 

including genetics, diet, lifestyle, and environmental exposures. Significant interindividual variations exist in the diversity, 

composition, and function of the microbiome.38,39 Many observational and intervention studies have shown how host genetic, 

epigenetic, and lifestyle factors including nutrition shape and influence variance in the gut microbiota.40-43 

 

Dysbiosis and Disease: The Impact of Gut Microbiota Composition on Metabolic Disorders 

 

The composition, function, and diversity of the gut microbiome are closely associated with an individual's predisposition to 

a wide range of diseases, many of which are linked to diet. Dysbiosis, an imbalance in the gut microbiota, has been implicated 

in various diseases affecting different parts of the body.44,45 It is now understood that alterations in the gut microbiome and 

microbial functions play a significant role in the pathogenesis of various diseases, including cancer and metabolic disorders. 

Such changes in the gut microbiota composition and function, when combined with traditional genetic predispositions and 

lifestyle factors, can contribute to the development and progression of these conditions.46,47 On the other hand, reduced 

calorie consumption and better metabolic health are associated with a varied and balanced gut microbiome that is rich in 

beneficial bacteria. Studies have indicated that individuals with healthier metabolic profiles tend to have a more diverse 

microbiome composition, characterized by a greater abundance of beneficial bacterial species.48 Studies also show that in 

the gut microbiomes of obese individuals, there tends to be a higher proportion of genes encoding membrane transport 

functions and those involved in butyrate synthesis. Conversely, genes linked to cofactor, vitamin, and nucleotide metabolism 

or transcription are more often depleted.49,50 A study of human and mouse microbiota correlated obesity with differences in 

the relative abundance of two dominant bacterial divisions and showed that obese individuals have an increased capacity to 

harvest energy from the diet.51 Relative abundance of certain bacterial phyla, particularly Bacteroidetes and Firmicutes, is 

altered in the gut microbiomes of obese individuals. Specifically, Bacteroidetes are often less common, while Firmicutes are 

more prevalent in obese individuals compared to lean individuals.52 The development of gut microbe-targeted therapies by 

reversing dysbiosis of the microbiota, inhibiting microbial enzymes or genetically engineered probiotics, has been suggested 

to be feasible and efficacious.53,54  

 

Comprehending the intricate connection between the intestinal microbiota and energy intake holds substantial ramifications 

for dietary patterns and well-being. Approaches directed towards fostering a robust intestinal microbiota, like ingesting a 

varied array of plant-derived foods abundant in fiber, probiotics, and prebiotics, might aid in bolstering optimal metabolic 

performance and managing energy consumption. a balanced diet that includes a sufficient amount of fiber promotes microbial 

fermentation of fiber into SCFAs, fosters microbial variability and stands as one mechanism by which high fiber consumption 

prevents weight gain, potentially outweighing inherited predispositions to obesity.55-57 Hence, it is plausible that a broader 

dietary regimen supplemented with appropriate nourishment could rectify the intraluminal milieu in instances of dysbiosis.58-

60 Moreover, delving deeper into the mechanisms governing the influence of the gut microbiome on appetite control and 

metabolic activity could pave the way for tailored interventions targeting obesity and other metabolic conditions. 

 

Therefore, the gut microbiome assumes a pivotal role in regulating energy balance and calorie intake by influencing appetite, 

metabolism, and food preferences. Encouraging a varied and well-balanced gut microbiome through dietary adjustments and 

lifestyle modifications could introduce innovative strategies for weight management and enhancing metabolic well-being. 

The effective fusion of dietary elements with the gut microbiome also holds considerable potential to transform disease 

management paradigms, offering personalized dietary suggestions, lifestyle alterations, or even the optimization of the gut 

microbiota tailored to individual needs and health objectives.61,62  

 

Integration of AI into Bioinformatics  

 

The rapid growth of computer hardware and software in the healthcare industry in recent years has facilitated the digitization 

of health data, opening up new avenues for the development of computational models and opportunities to utilize AI systems 

for deriving insights from data.63  
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In a recent paper, the authors underscored the "unprecedented opportunities" for boosting the expertise of professionals and 

the supportive function AI serves in alleviating human constraints like weariness and lack of focus, while also avoiding the 

dangers of mechanical fallibility. More significantly, the article stresses the importance of judicious implementation of these 

technological advancements while recognizing their significant potential.64 The digitization of health-related data and the 

swift adoption of technology are driving transformation and advancement in the utilization of AI in healthcare.65-67 Access 

to healthcare, environment, diet, and way of life all have a big impact on our personal health. The advent of wearable 

technology and other medical devices has enabled the monitoring and quantification of these behavioral, social, and external 

aspects. These variables collectively contribute to approximately 60% of our health determinants, encompassing 

physiological, psychological, behavioral, and socioeconomic data. In contrast, genetics constitute only 10% of these 

determinants, with medical history accounting for the remaining 30%.68  

 

Integration of AI into bioinformatics has enabled the analysis of large datasets, a task often challenging with conventional 

statistical methodologies. AI is applied across various domains including medical diagnosis, support for therapeutic 

techniques, prediction of disease onset risks, and other related areas.69 AI is even transforming our understanding of the gut 

microbiota and how it affects metabolism and calorie intake. A systems-wide mechanistic perspective that takes into account 

pre-disease, disease, and health states is necessary to gain a thorough knowledge of the dynamics within networks associated 

with nutrition and health benefits. This need emphasizes the need for cutting-edge techniques and procedures that can 

both quantify the effects of dietary changes in healthy persons and facilitate comparisons with patients who are diseased.70 

AI algorithms are finding increasing applications in personalized nutrition research, offering valuable insights and support 

for dietary activities, disease risk assessment related to food and nutrient patterns, and exploration of supplementation 

research.  

 

AI Applications in Personalized Nutrition and Gut Microbiome Analysis 

 

The primary aim of precision medicine is to tailor care to the specific needs of each patient.71,72 The momentum behind 

precision nutrition is rapidly growing, underscoring its increasing significance as we come to acknowledge its breadth. de 

Toro-Martín and colleagues elaborate on precision nutrition methodologies, which extend far beyond genetics to encompass 

elements such as dietary patterns, eating habits, physical activity, the microbiome, and the metabolome.73 Personalized 

nutrition stands on the cusp of a significant transformation with the advent of AI, which, through its capacity to analyze vast 

datasets, discern patterns, and make predictions, is opening up new avenues for personalized nutrition and precision 

medicine. Personalized nutrition is witnessing a surge, with advancements in AI and gut microbiome analysis revolutionizing 

our approach to diet and health. These personalized nutrition approaches have the potential to spearhead the development of 

information-processing representations of digestion, absorption, and metabolism.74-76 

 

By harnessing advanced computational techniques, AI empowers researchers to uncover intricate patterns and relationships 

within large datasets that were previously difficult to discern. The escalating utilization of AI algorithms in this domain 

reflects scientific advancement and is increasingly becoming not just an asset, but a necessity in the quest for valuable 

outcomes. Through sophisticated AI systems, healthcare professionals can leverage data analysis capabilities to discern 

patterns and offer personalized diagnoses and treatment plans for various gastrointestinal conditions. 

 

Numerous studies have highlighted that the underlying variability in the gut microbiome can be attributed to various factors, 

including diet, genetics, gender, age, lifestyle, environmental exposure, epigenetics, drugs, and geography. These intricacies 

may complicate the associations between the microbiota and human diseases.77-80 Given these complexities, there is a 

pressing need to develop advanced computational methods capable of efficiently extracting key information from vast, 

heterogeneous, and complex multi-omics data. AI algorithms can leverage data from gut microbiome analysis, genetic 

makeup, and lifestyle to offer tailored dietary recommendations. This data-driven approach takes into consideration the 

interplay between the gut microbiome, diet, and environmental factors, ensuring individuals receive personalized nutrition 

guidance tailored to their specific requirements.81,82 

 

In gut microbiome research, this is a primary application of AI involves analyzing microbiome composition and diversity. 

AI in biomedical sciences offers valuable tools and techniques for gathering, structuring, and scrutinizing vast biological 

datasets like nutritional, genomic, and related data.83 AI systems are capable of analyzing high-throughput sequencing data 

to classify and determine the number of different microbial species in the gut. More research is now underway, including 

longitudinally individualized multi-omics profiling—which includes genomes, metabolomics, and proteomics—thanks to 

developments in high-throughput technology.84 This method improves comprehension of the relationships between the gut 

microbiota and the host and provides a thorough grasp of human metabolism.85-87 AI diagnostics employ advanced algorithms 

to scrutinize diverse data sources, including stool samples, blood analyses, and health records. This enables researchers to 

profile the microbiome of individuals and populations with unparalleled precision and detail.  
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Furthermore, AI algorithms can analyze the interactions between gut microbes and host physiology to elucidate the 

mechanisms underlying their effects on calorie intake and metabolism. The application of AI in biomedical nutrition research 

addresses the need for effective examination and understanding of the complex interactions between nutrition and human 

physiology, particularly in the context of the gut microbiome.88-90 Important microbial metabolites, signaling pathways, and 

host-microbiome interactions that affect energy expenditure, calorie utilization, and appetite regulation can be identified 

using machine learning models. Utilizing a comprehensive approach facilitates the discovery of important markers that 

contribute to the development and progression of diseases such as colon cancer or irritable bowel syndrome (IBS). Timely 

detection and precise diagnoses are pivotal in ameliorating patient outcomes and enhancing treatment efficacy. 

 

Predictive modeling driven by AI is also used to create individualized food plans based on each person's unique gut 

microbiota composition. The individuality of each person's gut microbiome is a critical facet of gut health. By examining 

the gut microbiome in conjunction with AI-powered diagnostics, researchers and healthcare professionals can better 

understand and address individual needs AI systems analyze a wide range of factors, including gut microbiota, lifestyle, and 

environmental factors, to provide deep insights and create customized treatment plans. These recommendations consider 

various reactions to specific nutrients obtained from food, resulting from the complex interplay between nutrients and 

biological processes.91 These includes the correlation between external influences like food habits and physical activity, and 

internal factors like microbiota-metabolome interactions and genetics.92 For instance, AI systems are able to provide 

personalized food recommendations based on an individual's genetic composition by combining genetic data with nutrition 

databases.93 The variability in response to therapies and dietary advice among individuals is reflected in biomarker levels.94 

These anticipatory findings can be utilized to comprehend the complex regulatory mechanisms of dietary interventions at 

the convergence of immunity, metabolism, and gut flora. AI algorithms can forecast the potential impacts of various dietary 

strategies on an individual's gut microbiota and metabolic health by combining microbiome details with data on eating habits, 

lifestyle factors, and metabolic markers. This personalized approach enables precise dietary suggestions aimed at optimizing 

gut microbiota composition and regulating calorie intake. 

 

AI can also be employed to explore dietary preferences and trends in relation to the gut microbiota's composition. AI systems 

can uncover correlations between specific food components and shifts in the gut microbiome's structure by analyzing 

extensive databases of microbiome profiles and dietary intake records. This information can guide the development of dietary 

advice and interventions aimed at nurturing a balanced gut microbiome and managing calorie consumption. In this direction, 

AI-driven personalized nutrition is poised for ongoing enhancements, potentially facilitating the creation of a global network 

capable of actively overseeing and enhancing each person's nutrient intake.95  

 

AI's integration into gut microbiome research represents a groundbreaking frontier for advancing the understanding of the 

intricate interplays among the microbiome, calorie consumption, and metabolism. Through sophisticated computational 

analysis and data-driven methodologies, AI empowers scientists to navigate the complex mechanisms within the microbiome 

ecosystem. AI further enables the design of targeted interventions tailored to optimize metabolic well-being, paving the way 

for personalized nutrition. 

 

Potential of AI in Advancing Gut Microbiome Research 

 

In recent years, there have been several notable advancements in the field of AI and gut microbiome research, particularly 

concerning calorie intake and metabolism. 

 

The field of microbiome-based therapeutics is rapidly expanding. A growing body of evidence suggests that modifying the 

gut microbiota through different therapeutic regimens such as dietary adjustments, fecal microbiota transplantation, or 

supplementation with probiotics and prebiotics holds promise for preventing or treating various illnesses.96,97 AI is playing 

a crucial role in advancing the development of microbiome-based treatments for metabolic diseases like obesity. By 

identifying key microbial taxa and metabolites associated with metabolic health, researchers can tailor therapies such as 

microbial transplantation to optimize gut microbiome function and improve metabolic outcomes. Understanding the 

mechanisms underlying the functions of gut microbiota functions also opens up possibilities for developing highly effective 

probiotics with targeted benefits.90,98 

 

AI algorithms focused on microbiome-host interactions are unraveling the complex connections between the gut microbiome 

and host physiology, shedding light on hunger regulation, energy metabolism, and gut-brain communication. AI has played 

a pivotal role in advancing our mechanistic understanding of the gut microbiome by identifying novel microbial genomes 

and proteins from uncultured species, leveraging vast amounts of gut metagenomic data. Additionally, machine learning 

techniques can predict protein structures based on unidentified protein sequences, aiding in enzyme design and drug 

development.99 These breakthroughs enhance our understanding of how the gut microbiota influences calorie intake and 

metabolism, paving the way for innovative therapeutic strategies. 
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Using machine learning to find biomarkers connected to certain dietary treatments or health outcomes is greatly facilitated 

by advancements in bioinformatics and artificial intelligence. Researchers are increasingly leveraging machine learning 

techniques to uncover microbial biomarkers associated with metabolic health and disease. In earlier investigations of the 

microbiota, the interpretability of the models allowed for the simultaneous identification of biomarkers linked to disease, 

providing valuable biological insights into the data. This methodology enables the discovery of new insights into illnesses 

and facilitates the identification of viable treatment approaches.100 For instance, Yu et al. (2017) employed the minimum 

redundancy–maximum relevance (mRMR) feature selection method to identify an optimal set of 20 microbial genes 

predictive of colorectal cancer, with four validated genes distinguishing patients from controls across different ethnic cohorts. 

These findings underscore the potential of machine learning in identifying microbial biomarkers for the early diagnosis of 

colorectal cancer.101 Additionally, machine learning has been widely applied to the identification of microbial biomarkers 

for the purpose of evaluating the risk of disease and creating tailored treatments for gut microorganisms. Deep learning has 

shown great promise in a number of disciplines, such as AlphaGo and AlphaFold, which are applied to analyze large-scale 

microbiome datasets, offering new insights into microbial communities and their interactions with the host.99,102 AI systems 

have the capability to identify microbial signatures indicative of an individual's risk for conditions like obesity, insulin 

resistance, and other metabolic disruptions by analyzing vast microbiome datasets. This facilitates early detection and the 

development of personalized treatment strategies. 

 

Integrative methodologies in omics are essential for discerning the connections between the gut microbiota and human 

diseases. Single-omics analysis often provides only a partial view of the intricate biological systems. Recent research in gut 

microbiome highlights the vast potential of AI in integrating and analyzing diverse data sets.103,104 AI algorithms enable the 

integration of various omics data types, including genomics, metabolomics, and microbiomics, leading to a deeper 

understanding of the gut microbiome and its role in metabolism. Despite challenges such as high dimensionality and limited 

sample sizes, deep learning has proven effective in handling and integrating multi-omics data.105,106 By offering a 

comprehensive understanding of the molecular processes underlying both metabolic health and illness, these integrated 

approaches simplifying the identification of novel treatment objectives and strategies 

 

The latest advancements in artificial intelligence and gut microbiome research are significantly enhancing our understanding 

of the complex interplay between the microbiota, caloric intake, and metabolism. Through the utilization of sophisticated 

computational techniques and data analytics platforms, there is the potential to revolutionize the development of health 

platforms, customize forthcoming dietary guidelines to optimize health outcomes, and expedite the integration of these 

guidelines into clinical practice. By leveraging AI-driven methodologies, researchers can glean novel insights into metabolic 

health and devise state-of-the-art strategies for personalized dietary and therapeutic interventions. 

 

Challenges, opportunities, and practical implications of using AI in personalized nutrition 

 

Several challenges must be overcome to effectively utilize AI in exploring the connection between the gut microbiota and 

calorie intake and to implement it in precision medicine for personalized therapy. Despite progress, this field still faces 

obstacles that hinder seamless integration into real-world healthcare. One major challenge is the establishment of gut 

microbiota biobanks using AI technology for scientific research, which looms as a significant hurdle on the horizon.107 The 

incorporation of AI in healthcare introduces several challenges, including those related to multimodal data integration, 

federated learning, model performance, bias, and privacy concerns. Multimodal data integration entails merging information 

from diverse sources such as medical records, imaging studies, and genetic data, which can be intricate and demand advanced 

computational methods. Federated learning, which involves training machine learning models across multiple decentralized 

data sources, necessitates significant advancements in privacy-preserving techniques, large-scale machine learning, and 

distributed optimization to ensure data privacy and security while maintaining effective model performance.108  

 

Ensuring consistent data quality and standardization across diverse sources is imperative. Discrepancies in data collection, 

sequencing methodologies, and preprocessing can introduce biases that affect the accuracy and reliability of AI predictions. 

Evaluating the credibility and reliability of test outcomes generated by AI techniques is a critical challenge.109 The domain 

context and applications of AI in healthcare are closely intertwined with considerations of fairness and protected qualities. 

However, challenges arise due to limitations in the representativeness of training samples derived from patient data. Often, 

the sample sizes are insufficient to fully capture the diverse variations among patients and the complexity of their health 

conditions. The challenges are compounded by the curse of dimensionality, especially when dealing with gut microbiome 

data, where high dimensionality and limited sample sizes can hinder traditional AI methods.110 This challenge is termed as 

bias, which remains one of the significant hurdles in the application of AI in healthcare. Data bias occurs when the training 

data used to develop AI models is not representative of the population it aims to serve. This can lead to inaccuracies or unfair 

outcomes, particularly for underrepresented groups, and can exacerbate existing health disparities.111 Further research in the 

field of medical AI is essential to understand and address fairness and bias in AI models constructed using historical patient 

data. Collaboration between the biomedical and AI communities is crucial to tackle this challenge effectively. To mitigate 

bias and overfitting in AI models, it is imperative to validate algorithms derived from retrospective and single-center studies 
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and promote validation across multiple centers and in prospective studies. Standardizing data processing methods would not 

only streamline clinical data collection but also facilitate predictive analysis. This approach enhances the robustness and 

applicability of AI models, ensuring their effectiveness across diverse settings.112 Standardizing data also promotes seamless 

communication among medical facilities, physicians, academic institutions, and data scientists involved in data evaluation. 

This facilitates quick and consistent identification of missing data for individual patients. Furthermore, ensuring data 

uniformity across healthcare organizations ensures the quality of patient care and facilitates monitoring of their records, 

thereby enabling evidence-based recommendations to be formulated. 

 

The lack of clarity in complex AI algorithms, like deep learning, presents challenges in grasping underlying mechanisms. 

The demand for individuals adept at bridging computational and clinical fields has surged with the advent of new data-driven 

technologies. Ensuring model clarity is pivotal for effectively translating research findings into actionable insights. This 

highlights the necessity to train individuals with broad expertise in computer science, statistics, biology, nutrition, 

biomedicine, mathematics, and data science. Integrating concepts from statistics, machine learning, bioinformatics, 

mathematics, and computer science into training programs for students, trainees, and professionals in data science is 

imperative. Workshops and training events designed to unite researchers from diverse backgrounds can bolster response 

predictability.113 The training of the new professionals should reflect the cutting-edge knowledge guided by the change in 

day to day informatics challenges.114 Trainers stand to gain valuable insights from trainings and tutorials, obtaining up-to-

date knowledge on the latest technology, data standards, and utilization procedures for infrastructure services.115 

 

Robust AI models that accurately capture the dynamics of the gut microbiome across populations and dietary habits require 

large, diverse datasets for training. However, obtaining such databases can be costly and logistically challenging. Exploring 

alternative methods to facilitate the development of high-performing AI systems, such as generating synthetic data with 

realistic variations or leveraging simulated environments, is imperative. While early research shows promise, further 

investigation into AI is warranted.116 Furthermore, despite AI's ability to identify relationships, distinguishing causation from 

correlation remains a challenge. Mere concatenation of raw data or model outputs from each perspective overlooks 

opportunities to explore potential connections and interactions among diverse multi-omic data. To establish causality and 

validate AI-driven predictions, longitudinal research and experimental interventions are essential. 

 

Concerns regarding data ownership, consent, and privacy arise when AI utilizes gut microbiome data for personalized 

recommendations. The issue of trust in AI-based technologies, especially among the senior population, has not been fully 

addressed. Recent research has showcased the potential of new computational algorithms to identify individuals within public 

or commercial health databases.117 A crucial consideration is that health data should not be used to discriminate against 

individuals in determining insurance costs or employment status.95 The use of genetic data poses extra challenges since the 

drivers of prediction algorithms remain uncertain.117 Unauthorized access to and misuse of electronic medical records present 

additional concerns. Improper access to medical records can lead to privacy breaches.118 Establishing a secure and tightly 

regulated environment for data storage, management, and exchange is imperative. This necessitates the adoption of new 

technologies, collaborative efforts, and the development of new business models and legislation. Transparency, informed 

consent, and data security are essential for maintaining trust and protecting individuals' rights. One approach that AI system 

engineers can explore to address ongoing privacy concerns is the use of generative data. Generative models enable the 

creation of synthetic patient data that is realistic yet unrelated to actual individuals.119,120 This makes machine learning 

possible without requiring the long-term use of actual patient data. 

 

The cost of AI technology may render it inaccessible to certain individuals and healthcare facilities. Residents in rural or 

isolated areas, lacking adequate internet connectivity or technological infrastructure, may face limited access.121 Thus, in 

order to improve access to social, economic, and educational opportunities, digital equity must be promoted. It is imperative 

to surmount financial obstacles and augment accessibility to guarantee universal availability of customized dietary plans and 

metabolic health treatments. 

 

Collaboration across disciplines, rigorous study designs, transparent reporting, and adherence to ethical standards are 

effective strategies for addressing these challenges. Overcoming these challenges would allow AI to fulfill its potential in 

revolutionizing our understanding of how the gut microbiome regulates energy intake and metabolism. This enhanced 

understanding could lead to more effective approaches for improving metabolic health and preventing chronic diseases. 

 

Conclusion 

 

Recent studies have shed light on the multifaceted roles of the gut microbiota in human health, emphasizing microbial 

diversity as a principal indicator of overall well-being. However, substantial inter-individual variability exists, influenced by 

environmental factors and dietary quality.122-126 Nutrition and diet are recognized as significant determinants of an 

individual's health, with a growing emphasis on understanding how dietary patterns and specific diets impact an individual’s 

health. This shift in research focus—from analyzing the effects of individual nutrients to examining the functional aspects 
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of dietary patterns—reflects a deeper understanding of the complex interactions between diet, gut microbiota, and human 

health.127-129 

  

Due to the significant role that diet plays in influencing gut microbiota composition and host metabolism, our understanding 

of actions patients can take to enhance their systemic health is evolving.130,131 The relationships observed in microbial 

diversity emphasize the significance of consuming a nourishing, diverse diet. They support the idea that dietary supplements 

containing particular nutrients should not be viewed as replacements for a balanced and healthy diet.132,133 Nutrition and 

dietary habits exert a more substantial influence on the prognosis of chronic diseases such as diabetes, obesity, IBS and 

colorectal cancer compared to genetic and environmental factors. These elements impact metabolism and inflammation.134-

137 

 

Despite advancements, unanswered questions remain regarding the precise composition of an optimal health-promoting 

microbiome and strategies for cultivating such flora in individuals with initially diverse microbiotas. Standardized dietary 

approaches may not always yield desired outcomes. Discrepancies in the effectiveness of lifestyle interventions may be 

attributed to variations in gut flora among individuals.77,137,138 It is noted that patients exhibit highly personalized reactions 

of their microbiomes to diverse meals, depending on their previous dietary experiences.139 Consequently, owing to 

advancements in AI and gut microbiome research, personalized nutrition and healthcare are on the brink of a transformative 

shift. The use of AI in health research and initiatives has surged in recent years, facilitating the integration of various clinical 

data elements, establishing connections between biorepositories and clinical data, and bridging the gap between clinical data 

and pharmaceutical research and development.140-143 AI-driven platforms have the potential to enhance metabolic health 

outcomes and prevent chronic diseases such as obesity by providing personalized food recommendations based on an 

individual's gut microbiome composition and metabolic profile. Future investigations should focus on elucidating the 

intricate functions of the gut microbiota in these processes. These findings may lead to the utilization of the gut microbiota 

and its metabolites in the treatment of metabolic disorders in the future. Probiotics and prebiotics exemplify customized 

interventions offered by microbiome-based therapies driven by AI, targeting specific microbial imbalances to provide more 

effective and personalized treatment options. 

 

Moreover, AI algorithms can detect early signs of metabolic dysfunction through the analysis of microbial biomarkers. This 

enables timely intervention and the prevention of chronic disease. The advancement of medications designed to modulate 

the gut microbiota and the development of personalized treatment plans are facilitated by our expanding knowledge of how 

the gut microbiome influences drug metabolism. Early detection of metabolic abnormalities facilitated by AI-driven 

diagnostic technologies is another avenue through which patient outcomes can be enhanced and healthcare resources 

optimized. 

 

Furthermore, in the realm of medical education, the incorporation of AI into personalized nutrition holds significant promise. 

For instance, the integration of digital pathology and AI, already in practice in several medical education settings, greatly 

enhances students' comprehension of pathophysiology concepts.144 This integration can further offers insights into the 

complex relationship between cellular morphology and physiological processes, including those influenced by the gut 

microbiota. Through the use of AI-driven diagnostic tools, aspiring physicians can delve into the subtle connections between 

tissue pathology and systemic health, acquiring valuable insights to inform personalized nutrition strategies aimed at 

optimizing metabolic well-being for both themselves and their future patients. 

 

Future research endeavors should aim to elucidate the roles of nonbacterial microorganisms in the human gut and the shifts 

in bacterial composition associated with different disease states. Future developments in AI and gut microbiome research 

have the potential to revolutionize precision medicine, public health initiatives, and healthcare efficiency. These 

advancements may offer unprecedented opportunities to enhance metabolic health and overall well-being on a global scale. 

Ultimately, leveraging AI across the field of gut microbiota research will facilitate advancements in precision nutrition, 

personalized medicine, and the development of next-generation probiotics tailored to individual patients.77,27,145 While AI 

and precision medicine hold immense promise, efforts to test, validate, and refine treatment protocols require continued 

dedication. Overcoming challenges such as obtaining sufficient high-quality labeled data for algorithm training, navigating 

regulatory and privacy considerations, and adopting standardized data formats are crucial steps for researchers to address. 

This review highlights several key points for further consideration and investigation. Promising strides are being made in 

surmounting the obstacles faced by AI in healthcare, paving the way for continued growth and advancement in AI's role in 

both personal and population health. 
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